Фюзеляж делается или четырехугольным, или треугольным, или круглым и т. д. Но всегда форма его такова, что к концам он заостряется и задний конец всегда больше заострен, чем передний. Такая форма, как уже давно доказано, — самая выгодная, и при ней встречный воздух меньше всего мешает продвигаться самолету, или, как говорят, оказывает небольшое сопротивление.
Шасси (рис. 4) нужно самолету для того, чтобы катиться по земле при разбеге и при посадке (пробег). Шасси делается из прочных стальных труб и укрепляется под передней частью фюзеляжа. Колеса с металлическими ободами и спицами имеют резиновые покрышки, и внутри их — резиновые камеры, в которые накачивается воздух. Это делается для того, чтобы уменьшить толчки при разбеге. Но этого оказывается недостаточно. Чтобы еще больше смягчить толчки, ось, на концах которой надеты колеса, прикрепляется к шасси не накрепко, а привязывается толстым резиновым шнуром, в несколько витков, при толчках шнур растягивается и ослабляет толчки. Резиновый шнур называется амортизатором.
Костыль (рис. 5 и 13) под задним концом фюзеляжа делается обычно из дерева и металла. На костыле ползет задний конец фюзеляжа. При подъеме костыль не мешает, так как хвост поднимается, а при посадке костыль тормозит и уменьшает пробег.
КРЫЛЬЯ
От крыльев особенно сильно зависит, как самолет летает, — плохо или хорошо. Крылья должны быть и прочны и легки. Вот почему их трудно устраивать.
У деревянных самолетов остов крыльев состоит обычно из двух продольных брусьев, которые тоже называются лонжеронами (как и у фюзеляжа). Эти лонжероны делаются из двух довольно тонких деревянных реек, скрепленных двумя фанерными стенками. Получается как бы длинный тонкий ящик или коробка, поэтому такие лонжероны и называются коробчатыми.
На лонжероны надеваются многочисленные ребра, которые называются нервюрами. Нервюры представляют собой деревянные ажурные ребра, сделанные из тонких деревянных реей и фанеры. Форма нервюр бывает различная, и в зависимости от этой формы получается тот или иной профиль крыла, т. е. вид в, поперечном разрезе или сбоку.
Передние и задние концы нервюр скрепляются деревянными рейками. Для придания крылу прочности лонжероны скреплены поперечными деревянными рейками и растянуты стальными растяжками. Сверху скелет крыла туго обтягивается тонким полотном, которое пропитывается особым составом, а затем покрывается краской и лаком. От этого крыло становится жестким, блестящим и непромокаемым. Иногда вместо полотна употребляется тонкая фанера, которая тоже покрывается краской и лаком.
У металлических самолетов остов крыла делается из металла и обтягивается чаще всего тонкими гофрированными листами дюралюминия[1], реже — тонкой сталью.
Теперь все чаще и чаще строят крылья толстого профиля. У некоторых самолетов толщина крыла больше 1 метра. При такой толщине крыло легче сделать очень прочным (рис. 8).
Рис. 8. Испытание прочности металлического крыла.
Если же крыло получается прочным, то его можно прикрепить к фюзеляжу без всяких стоек и подкосов — такое крыло называется свободнонесущим. Свободнонесущее крыло выгоднее, так как тросы, всякие стойки и подкосы создают лишнее сопротивление воздуха, т. е. уменьшают скорость самолета и его подъемную силу.
МОТОР И ВОЗДУШНЫЙ ВИНТ
Мотор — сердце самолета (рис. 9).
Рис. 9. Установка мотора и воздушного винта на самолете.
От надежности его работы зависит часто не только выполнение полета, но и его безопасность.
Самолетный мотор мало чем отличается по своему устройству от автомобильного мотора, но обыкновенно авиамотор более мощный. Общее устройство мотора видно на рис 10.
Рис. 10. Схема авиамотора. Для наглядности показаны только главные части и один цилиндр разрезан. 1 Картер. 2 Цилиндр. 3 Впускная труба. 4 Путь горючей смеси. 5 Впускной клапан. 6 Выпускная труба. 7 Выпускной клапан. 8 Вода для охлаждения цилиндра. 9 Водяная рубашка. 10 Поршень. 11 Шатун. 12 Коленчатый вал. 13 Колено вала. 14 Пропеллер. 15 Магнето. 16 Якорь магнето. 17 Электрические провода от магнето к свечам. 18 Свеча.
Главная часть мотора — это цилиндр, цилиндров обычно — несколько. Цилиндр делается из стали, внутри его двигается поршень, который своим шатуном соединен с коленчатым валом мотора. Значит, чтобы заставить вращаться вал, надо заставить двигаться шатун и поршень. Как же это делается?
В верхнем конце цилиндра есть два клапана, впускной и выпускной. Тут же есть особое приспособление для зажигания попадающего в цилиндр бензина (его паров); это приспособление называется зажигательной свечой.
Пусть в цилиндр через впускной клапан попадает смесь бензина с воздухом (горючая смесь). Если теперь заставить поршень двигаться, то он сожмет горючую смесь. Когда смесь достаточно сжата, внутри цилиндра на свече проскакивает электрическая искра. От искры горючая смесь воспламеняется и образуется много раскаленных газов, которые так сильно давят на поршень, что он приходит в движение, поршень своим шатуном толкает коленчатый вал, который приходит от этого во вращательное движение. Отработанные газы выпускаются из цилиндра через выпускной клапан а через впускной поступает новая порция горючей смеси. Она снова воспламеняется снова поршень толкает шатун и т. д. Таким образом и происходит работа мотора.
«А как же мотор начинает работать?» — спросит читатель.
Для того чтобы запустить мотор, надо несколько раз, вращая пропеллер, провернуть вал мотора. От этого поршни в цилиндрах задвигаются, в цилиндры засосется горючая смесь (воздух с бензином), электрическая машинка (магнето), которая соединена шестеренкой с валом мотора, начнет работать и на свече одного из цилиндров проскочит электрическая искра. Он зажжет смесь, а дальше мотор уж сам будет продолжать работу. Все дальше выполняется автоматически. Цилиндры нижними концами (открытыми) укреплены в особой большой металлической коробке, которая называется картером; в нем-то и вращается коленчатый вал. Цилиндры во время работы так сильно нагреваются, что их надо обязательно охлаждать. Это делается или с помощью встречного воздуха — тогда наружная поверхность цилиндров делается ребристой, отчего она скорее охлаждается. Чаще же для охлаждения применяется вода, которая из особого резервуара (радиатора) поступает в так называемые рубашки — особые металлические чехлы, которыми покрыты цилиндры. Смазка мотора производится автоматически с помощью масленой помпы, которая приводится в движение от вала мотора.
Для приготовления горючей смеси устроен особый прибор, называемый карбюратором.
Бензин из бака попадает в этот прибор и здесь автоматически смешивается в нужной пропорции с воздухом и уже в газообразном состоянии попадает в рабочую камеру цилиндров.
На передний, выдающийся из картера, конец коленчатого вала насаживается своей втулкой воздушный винт, или пропеллер.
Воздушный винт делается из дерева, а в последнее время — из металла (рис. 11).
Рис. 11. Металлический воздушный винт (пропеллер).
Будущее конечно — за металлическим винтом. У современных самолетов вал мотора (а следовательно и винт) делает около 1500 оборотов в минуту. Число оборотов, а значит и тягу винта и скорость самолета летчик может регулировать. Действуя левой рукой на маленькие рычажки, идущие от мотора, летчик может уменьшать или увеличивать количество горючей смеси, попадающей в цилиндры, и тем ослаблять или усиливать силу взрывов, получающихся от воспламенения смеси в цилиндре.
Ряд приборов позволяет летчику судить о правильности работы мотора или его недостатках.
КАК УСТРОЕНО УПРАВЛЕНИЕ САМОЛЕТА
Конечно самолетом управлять труднее, чем, например, моторной лодкой или автомобилем. Лодку или автомобиль надо поворачивать только влево и вправо, для чего у лодки и имеется один руль, а у автомобиля шофер с помощью штурвала поворачивает колеса в ту или другую сторону. Но ведь самолет надо уметь поворачивать не только в стороны, но и направлять то вниз, то вверх. Мало того, если самолет накренится — его надо суметь выровнить.
Сколько же надо рулевых приспособлений для управления самолетом? Ясно — надо три: руль направления, руль глубины и элероны (см. рис. 5). Как же они устроены и как летчик может ими двигать (рис. 12)?
Рис. 12. Устройство самолета и его органов управления (на рисунке для ясности как бы сорвана обшивка левой и нижней стороны фюзеляжа). 1 Мотор. 2 Моторная рама. 3 Бак для бензина. 4 Бак для масла. 5 Доска с приборами. 6 Козырек. 7 Регулятор газа. 8 Элероны. 9 Ножной рычаг для движения руля направления. 10 Рычаг управления рулем глубины и элеронами (ручка).
Руль направления у самолета устроен в точности так, как руль обыкновенной лодки. От него идут к летчику два тонких троса и прикрепляются к концам поперечного горизонтального рычага, который находится под ногами летчика. Так как этот рычаг может вращаться на болту, то и получается так, что летчик, нажимая ногами, может легко поворачивать руль направления, а значит и поворачивать самолет в ту или другую сторону.
Руль глубины можно наклонять вверх и вниз. От этого руля к летчику тоже идут тонкие тросы и особым образом прикрепляются к вертикальному рычагу, который находится перед летчиком. Этот рычаг устроен на шарнирах и может наклоняться во все стороны. Рычаг этот называется обыкновенно просто ручкой, и мы его так и будем называть. Так вот если летчик наклоняет ручку вперед, или, как говорят, если летчик «дает от себя», то руль глубины наклоняется вниз и самолет наклоняет нос вниз и начинает спускаться. Наоборот, если летчик тянет ручку к себе, как говорят, «берет ручку на себя», то руль глубины и нос самолета поднимаются, и машина начинает забирать высоту.
От элеронов к летчику тоже идут тросы, которые прикрепляются к той же ручке, что находится перед летчиком. Элероны двигаются тогда, когда летчик эту ручку наклоняет вправо или влево. Если летчик наклоняет ручку влево, то и самолет кренится влево, а если — вправо, то и самолет кренится вправо. Обыкновенно летчику приходится одновременно двигать обоими рулями и элеронами. Поэтому всего ч