Крупнейший американский сейсмолог Брюс Болт размышляет о том, как возникают землетрясения.
Типы землетрясений
Еще не так давно было широко распространено мнение, что причины землетрясений всегда будут скрыты во мраке неизвестности, поскольку они возникают на глубинах, слишком далеких от сферы человеческих наблюдений. Долгое время господствовал взгляд, что землетрясения приходят как наказание за человеческие грехи…
Сегодня мы можем объяснить природу землетрясений и большую часть их видимых свойств с позиций физической теории. Согласно современным взглядам, землетрясения отражают процесс постоянного геологического преобразования нашей планеты. Рассмотрим теперь принятую в наше время теорию происхождения землетрясений и то, как она помогает нам глубже понять их природу и даже предсказывать их.
Первый шаг к восприятию новых взглядов заключается в признании тесной связи в расположении тех районов земного шара, которые наиболее подвержены землетрясениям, и геологически новых и активных областей Земли. Большинство землетрясений возникает на окраинах плит, поэтому мы делаем вывод, что те же глобальные геологические, или тектонические, силы, которые создают горы, рифтовые долины, срединно-океанические хребты и глубоководные желоба, те же самые силы представляют собой и первичную причину сильнейших землетрясений. Природа этих глобальных сил в настоящее время еще не совсем ясна, но несомненно, что их появление обусловлено температурными неоднородностями в теле Земли. Обращает на себя внимание тот факт, что большинство самых разрушительных землетрясений – таких, как Сан-Францисское 1906 г., Японское (Мино-Овари) 1891 г. и Гватемальское 1976 г. – возникло в результате вспарывания крупных разломов, выходящих на поверхность.
Полезно ввести классификацию землетрясений по способу их образования. Больше всех распространены тектонические землетрясения. Они возникают, когда в горных породах под действием тех или иных геологических сил происходит разрыв.
Однако землетрясения возникают и от других причин. Подземные толчки другого типа сопровождают вулканические извержения. И в наше время многие люди все еще считают, что землетрясения связаны главным образом с вулканической деятельностью. Эта идея восходит к древнегреческим философам, которые обратили внимание на широкое распространение землетрясений и вулканов во многих районах Средиземноморья. Сегодня мы также выделяем вулканические землетрясения – те, которые происходят в сочетании с вулканической деятельностью, но считаем, что как извержения вулканов, так и землетрясения являются результатом действия тектонических сил на горные породы, и они не обязательно возникают вместе. Сам механизм образования сейсмических волн при вулканических землетрясениях, вероятно, тот же, что и при тектонических.
Третью категорию образуют обвальные землетрясения. Это небольшие землетрясения, возникающие в районах, где есть подземные пустоты и горные выработки. Непосредственная причина колебаний грунта заключается при этом в обрушении кровли шахты или пещеры. Часто наблюдаемая разновидность этого явления – так называемые горные удары. Они случаются, когда напряжения, возникающие вокруг горной выработки, заставляют большие массы горных пород резко, со взрывом, отделяться от ее забоя, возбуждая сейсмические волны. Горные удары наблюдались, например, в Канаде; особенно часто они отмечаются в Южной Африке.
Признаки готовящегося землетрясения
Что служит предвестником готовящегося землетрясения? Предложений выдвинуто много, но все еще неясно, какие из предполагаемых предвестников можно считать надежными.
В последние годы работы по прогнозу землетрясений в большой степени были направлены на точные измерения особенностей физических свойств пород земной коры в сейсмически активных областях континентов. Были установлены специальные чувствительные приборы, с помощью которых можно изучать долгопериодные изменения этих свойств. Объем выполненных измерений пока еще не велик, и полученные результаты сильно расходятся: в одних случаях перед местным землетрясением наблюдались необычные вариации физических свойств, в других не было замечено ничего особенного либо возникали вариации, не связанные с землетрясениями.
Землетрясение на Тайване. 1999 г.
Прежде всего особый интерес сейсмологов привлекают предвестниковые изменения скорости продольных сейсмических волн, поскольку сейсмологические станции специально сконструированы так, чтобы точно отмечать время прихода волн. Идея, на которой основано использование этого параметра, очень проста. Если свойства горных пород перед землетрясением изменяются, то может меняться и скорость сейсмических волн. Такое изменение во времени легко обнаруживается с помощью современных сейсмографов и хронометров.
Второй из параметров, которые могут быть использованы для прогноза, – это изменение уровня земной поверхности, например наклон поверхности грунта в сейсмичных районах.
Третий параметр – выделение инертного газа радона в атмосферу вдоль зон активных разломов, особенно из глубоких скважин. Сообщалось, например, что в некоторых районах СССР непосредственно перед землетрясениями обнаруживаются значительно возросшие концентрации радона. Однако поскольку в настоящее время еще собрано очень мало данных о содержании радона в различных геологических условиях, сейчас еще нельзя утверждать, что наблюдавшееся возрастание было исключением из нормального хода изменения концентрации этого газа.
Четвертый параметр, привлекающий большое внимание, – электропроводность пород в зоне подготовки землетрясения. Из лабораторных экспериментов, проведенных на образцах горных пород, известно, что электрическое сопротивление водонасыщенной породы, например гранита, резко меняется перед тем, как порода начинает разрушаться под действием высокого давления.
Пятый параметр – вариации уровня сейсмической активности. По этому параметру имеется больше сведений, чем по четырем другим, но полученные до сих пор результаты не позволяют сделать определенных выводов.
Можно предположить, что вариации этих пяти параметров происходят в пять стадий, которые проявляются в деформированных породах коры перед крупным землетрясением, во время землетрясения и сразу же после него.
11 марта 1669 г. произошло извержение вулкана Этна, Италия. Погибло 20 000 человек (по другим данным – от 60 до 100 тыс.). Реки расплавленной лавы похоронили под собой 50 городов.
7июня 1692 г. землетрясение на Ямайке разрушило город Порт-Ройял, вотчину карибских пиратов. Погибли две трети населения – 1600 человек. Волна цунами вместе с оползнями смыла в море северную часть города со всеми жителями.
XVIII век
1 ноября 1755 г. произошло Лиссабонское землетрясение. Было зафиксировано 500 подземных толчков. Погибло 50 000 (по другим источникам – 100 000) человек.
Весь город вместе с бесценными сокровищами искусства и памятниками эпохи Просвещения был разрушен. Разрушительная сила землетрясения ощущалась на огромной территории, особенно в Европе и Северной Африке. Были человеческие жертвы в Марокко и даже в Люксембурге.
Дом на резиновых подушках
В мировой практике прогнозирования землетрясений лучше всего отработаны долгосрочные прогнозы, когда бедствие предсказывается на много лет вперед, а точная дата катастрофы не указывается. Среднесрочный прогноз дается на год, но тут можно ошибиться, как говорится, на все 100 %. Ну а краткосрочного прогноза, задача которого предсказать природное явление за несколько дней, практически не существует. В этой ситуации людям помогает лишь внимательное наблюдение за поведением животных: инстинктивно они предчувствуют катастрофу за несколько часов и начинают проявлять беспокойство.
При прогнозировании землетрясений ученые чаще всего обращаются к опыту стран, которых постигли самые тяжелые катастрофы. Больше всего достижений в предсказаниях стихийных бедствий у армянских исследователей.
Национальная служба сейсмической защиты совместно с Массачусетским технологическим институтом США и Объединенным институтом физики Земли Российской Академии наук с помощью высокоточных инструментов получили данные о том, что территория Армении испытывает сжатие в северо-восточном направлении (10+2 мм в год).
Наука постоянно ищет ответ на вопрос: где, какой силы и когда произойдет сейсмический толчок? Учеными Армении впервые найдена математическая зависимость между характеристиками одного из многих десятков предвестников – геодезического предвестника – и параметрами будущего землетрясения (магнитудой и длиной очага).
Наводнение 1777 г. в Санкт-Петербурге
Сегодня уже можно сказать, как на разных участках активных разломов ведет себя стихия, и понять, где готовится землетрясение.
Одновременно направляются усилия на применение новых технологий сейсмостойкого строительства. В Японии, в городе Кобе, где при землетрясении в январе 1995 г. погибли 5 тыс. человек и были разрушены некоторые сооружения, построенные по последнему слову техники, не пострадали здания на резиновых подушках, построенные после 1980 г.
28 сентября 1759 г. на глазах многих очевидцев в мексиканском штате Мичоакан родился новый вулкан Хорулло, превратившийся со временем в большую конусообразную гору.
23октября 1766 г. произошло извержение вулкана Майон на острове Лусон, Филиппины. Погибли более 2000 человек. В течение 2 месяцев гора выбрасывала пепел и лаву.
24 апреля 1771 г. на японский остров Ишигаки обрушилась цунами высотой 85 м.
21(10) сентября 1777 г. произошло первое наводнение в Санкт-Петербурге, Россия. Вода поднялась на 310 см.
В 1783 г. сильные землетрясения, извержения вулканов сотрясали Исландию, лава покрыла территорию 570 км2. Плотный слой пыли закрыл небо. Из-за пепельного дождя исчезла вся рыба в прибрежных водах. Из-за отсутствия солнечного света на острове перестала расти даже трава. В результате от голода погибла половина крупного рогатого скота и треть всех овец. Умерли 49 000 человек – четверть населения страны. Люди жевали недубленую кожу и канатную нить. Был даже выработан план эвакуации населения и размещения его в Дании. Но жители отказались покидать свой остров.
1 апреля 1793 г. произошло сильное землетрясение в Японии, во время которого о. Унсен со всеми жителями (53 000) исчез в водах моря. Землетрясение раскололо остров пополам и пробудило к жизни вулкан, который позже взорвался.
4 февраля 1797 г. землетрясение в Эквадоре почти полностью разрушило город Кито. Погибли 40 000 человек – большая часть населения города. Землетрясение разбудило от спячки два мощных вулкана: Котопахи и Чимборасо.
XIX век
Весной 1804 г. песчаные бури в районе торгового центра Тимбукту в Западной Африке унесли жизни многих тысяч людей. Нигде не встретишь описания этой бури, потому что в живых не осталось никого. Например, караван из 2000 человек и 3000 верблюдов, который начал свой путь в оазисе Цагора, должен был достичь города Тимбукту через 52 дня. Однако произойти этому было не суждено. Караван сбился с пути и погиб.
12 марта 1812 г. произошло землетрясение в Венесуэле, почти полностью разрушившее город Каракас. 20 000 человек погибли.
1 февраля 1814 г. произошло извержение вулкана Майон на о. Лусон. Филиппины. Погибли более 2200 человек.
5—12 апреля 1815 г. во время извержения вулкана Тамборо (Тамбора) на о. Сумбава, Индонезия, погибло почти 4900 жителей. В воздух было выброшено, по приблизительным подсчетам, 1,7 млн т обломков.
19 (7) ноября 1824 г. в Санкт-Петербурге, Россия, произошел потоп. Вода в Неве поднялась на 410 см.
Событие в фокусе
В королевстве приливов
Хочу у моря я спросить,
Для чего оно кипит?
С тех пор как существует человечество, тайны моря волновали людей. И среди многих загадок – одна из самых интересных: почему с неумолимой регулярностью море то надвигается на берег, то отступает от него? Здесь мы расскажем, как от легенд и суеверий, возникших вокруг приливов в древности, люди перешли к изучению и объяснению этого интереснейшего явления природы. А также какую колоссальную роль сыграли приливы в истории человечества, какое место занимают они в современной жизни и какое будущее их ожидает.
На нашей планете приливы существовали задолго до того, как появились океаны. И даже до того, как образовалась Луна, которая отчасти управляет ими. Согласно одной из теорий, притяжение Солнца породило огромные приливы на поверхности Земли еще в те времена, когда она представляла собой расплавленную массу. В какой-то момент эти приливы стали настолько большими (поверхность Земли так далеко выпятилась в сторону Солнца), что часть расплавленной массы оторвалась и вихрем взвилась в космическое пространство. Так появилась Луна. И поверхность Земли тотчас же стала испытывать притяжение новорожденного небесного тела. В начале своего космического путешествия Луна была намного ближе к Земле, чем теперь. И надо думать, что в то время, когда земные испарения, сконденсировавшись во влагу, образовали океаны, приливы, порождаемые Луной, достигали огромной высоты. Они обрушивались на острова-континенты, меняя их очертания и вымывая из твердых земных пород соль и другие химические вещества, которые теперь содержатся в морской воде.
По мере того как Луна отдалялась от Земли, приливы слабели и наконец стали такими, какими мы наблюдаем их сегодня. Но и теперь они испытывают заметные колебания. Каждые несколько столетий расположение Земли, Луны и Солнца относительно друг друга повторяется, что обусловливает длительные приливные циклы: в сравнительно недавнем прошлом, где-то около 550 г. н. э., приливы были минимальны, в 1400 г. они достигли максимума, а следующий минимум ожидается примерно в 2400 г.
В наши дни, по мере того как Луна неуклонно отдаляется от Земли, приливы продолжают незаметно ослабевать. Одновременно приливное трение замедляет вращение Земли, вследствие чего с каждым столетием земные сутки удлиняются на доли секунды. Так будет продолжаться и дальше, и в невообразимо далеком будущем (через многие миллионы лет) лунные приливы исчезнут вовсе.
Первые сведения о приливах и первые теории
Одна из причин того, что мы так поздно получили первые сведения о приливах и так мало знаем о них и сейчас, состоит в том, что первые записи исторических фактов пришли к нам от древних египтян, греков и римлян. Эти цивилизации развивались на берегах Средиземного моря, где приливы почти незаметны.
Даже английское слово «tide», означающее «прилив», имеет весьма туманное происхождение. По-видимому, оно происходит от древнеанглийского «tid» или немецкого «zeit», а оба эти слова означают «время» или «относительно времени». Это наводит на мысль, что уже в древние времена люди подметили связь подъемов и спадов поверхности океана с фазами Солнца и Луны. У древних греков соответствующее слово означало отступление и наступление воды.
Первое упоминание о приливах относится приблизительно к 425 г. до н. э. и принадлежит перу древнегреческого историка Геродота, который, описывая некий залив у побережья Аравии (вероятно, Красное море), заметил: «Там каждый день отступает и наступает прилив». Полутора веками позже Пифей из Массилии, который отважился выйти за пределы не знающего приливов Средиземного моря и обогнуть Британские острова, заметил некую связь между приливами и Луной. Но ни Геродот, ни Пифей не дают объяснений этому странному явлению.
И только когда Плиний, великий римский натуралист и писатель, подарил древнему миру в 77 г. н. э. свою «Естественную историю», появилось точное описание приливов: «Многое было сказано о природе вод; но самое удивительное – это попеременное наступление и отступление приливов, проявляющееся по-разному, но всегда порождаемое Солнцем и Луной. Прилив дважды наступает и дважды отступает между каждыми двумя восхождениями Луны……
Так или иначе, но к началу христианской эры сам факт существования приливов и их очевидной связи с Луной был общепризнанным. Спустя 7 столетий Беда Достопочтенный, английский ученый, живший в эпоху раннего Средневековья, утверждал, что прилив и Луна связаны теснейшими узами: «И так же море следует за Луной не только в ее восходах и закатах, но и в ее неизменно чередующемся прибывании и убывании; прилив не только приходит нынче позже, чем накануне, как и она, но, как она, он то увеличивается, то уменьшается…»
Ньютон и закон всемирного тяготения
Первым мощным рывком к пониманию природы приливов стали опубликованные в 1687 г. «Начала» Исаака Ньютона, в которых великий математик и философ изложил свой закон всемирного тяготения.
Этот закон гласит, что все тела притягиваются друг к другу с силой, зависящей от их размеров и расстояния между ними, а еще точнее, что «каждые два тела притягивают друг друга с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними».
Это означает, что каждое тело в пространстве притягивает любое другое тело. Чем они больше, тем сильнее притяжение; чем дальше они друг от друга, тем притяжение слабее.
Поскольку Луна и Солнце – наши ближайшие соседи в пространстве, приложение к ним закона тяготения наиболее показательно. Фактически Ньютон ограничил свое исследование главным образом гравитационными силами Солнца и Луны, которые в зависимости от положения их в пространстве воздействуют на воду и сушу на Земле. И суша, и вода испытывают на себе действие этих сил, но вода, будучи жидкой и более подвижной, реагирует на них сильнее.
Примем как факт, что приливы – результат притяжения океанов Солнцем и Луной. Но почему же приливы ведут себя столь своеобразно?
Например, почему в некоторых частях света бывает два прилива в сутки, а в других – только один? И почему даже там, где бывает два прилива в сутки, они иногда равны по высоте, а иногда совершенно различны?
Почему в одном конце Панамского канала в течение суток бывает два прилива высотой 3–3,5 м, а в другом его конце (всего в 50 км) – только один, и его высота не достигает даже 0,8 м?
Почему высота приливов в заливе Фанди (Новая Шотландия, Канада) достигает 15–20 м, а в Нантакете, всего в нескольких сотнях миль от залива Фанди, она составляет чуть более полуметра?
Все эти вопросы дают представление о том, сколько важных факторов не смог учесть Ньютон, создавший первую состоятельную теорию приливов.
Силы, возбуждающие приливы
Наши сегодняшние знания о приливах основываются на ньютоновом законе всемирного тяготения. Но поскольку Земля принимается в нем за целое тело, то в приложении к океану, являющемуся ее жидкой оболочкой, нам следует ввести поправку в формулировку этого закона. Для этого достаточно заменить всего лишь одно слово – вместо слова «квадрат» (расстояния между телами) поставить слово «куб». Этого требует небесная механика, наука настолько сложная, что лучше всего удовлетвориться адаптацией X. А. Мар-мера, согласно которой «приливообразующая сила небесного тела изменяется прямо пропорционально его массе и обратно пропорционально кубу расстояния от него».
Масса Солнца в 26 млн раз больше массы Луны. Если бы они находились на одинаковом расстоянии от Земли, сила притяжения Солнца превышала бы силу притяжения Луны в 26 млн раз.
Однако Луна в 389 раз ближе к Земле, чем Солнце. Если, следуя закону Ньютона, возвести это число в куб – т. е. дважды помножить его на самое себя, – то получится 59 млн. Сравнив это число с числом 26 млн, легко убедиться, что приливообразующая сила Луны превышает приливообразующую силу Солнца в 2 раза. Поэтому Луна является главным приливообразующим фактором, а Солнце – лишь второстепенным. Разумеется, теоретически все небесные тела должны оказывать некоторое влияние на земные приливы, но их размеры или удаленность делают это влияние незначительным.
Если бы вы оказались на острове посреди океана и Луна стояла бы прямо над вашей головой, вы бы находились в точке, где Луна сильнее всего воздействует на земную поверхность, притягивая к себе каждую ее частицу. Вода, будучи жидкой и подвижной, естественно, реагирует на это воздействие сильнее, чем «твердая» земля, хотя действие силы притяжения испытывают на себе все частицы. Вы сами стали бы чуть легче в результате этого притяжения. Сам ваш остров неощутимо переместился бы вверх к Луне, ибо земная кора испытывает притяжение Луны так же, как и вода. Ученые вычислили, что город Москва дважды в сутки поднимается и опускается на целых 40 см. Мы не замечаем подъемов Земли точно так же, как и ее вращения, потому что мы сами – часть этого движения.
Время и прилив
«Время и прилив не ждут никого». Это их общее свойство, недаром в английском языке слово «прилив» происходит от слова «время». Во всяком случае, они подчиняются одним и тем же законам, хотя на первый взгляд эти законы озадачивают.
Чтобы понять простейшее проявление влияния самой Земли на поведение приливов, обратимся к географии наших материков и океанов. Ранее мы установили, что вследствие гравитационного воздействия Земли на Луну последней труднее поднимать воды океанов, и поэтому движение, создаваемое лунными приливами, как правило, горизонтально. В открытом море это горизонтальное движение охватывает большую площадь, и здесь мы наблюдаем очень незначительные колебания. Но суша образует преграду этому движению. Мели, а кое-где выступы суши встречают приходящую приливную волну поднятием дна. Воде некуда деться, и высота прилива увеличивается. Поэтому именно у побережий приливы проявляются во всей своей мощи.
В бухту Мон-Сен-Мишель у побережья Бретани, где дно очень постепенно понижается в сторону моря на протяжении 18 км, прилив врывается со скоростью бегущего человека, вздымаясь вверх почти на 12 м. То же самое происходит в Бенгальском заливе и у многих побережий, где дно понижается постепенно.
Подобным образом, когда фронт приливной волны приближается к суживающемуся углублению в береговой черте, берег как бы сдавливает приливную волну с боков, и, поскольку это мешает ее продвижению вперед, она стремится вверх, отчего уровень полной воды значительно увеличивается. Так бывает, например, в заливе Фанди, где прилив попадает в суживающуюся плоскую воронку, так что в некоторых точках вершины залива уровень воды поднимается до поразительно больших высот – 15 м и более.
Однако, если вы посмотрите на глобус, то увидите, что географические точки, в которых приливы достигают наибольшей высоты, заметно различаются по широте, что опровергает одно из утверждений, а именно, что высота приливов уменьшается по мере приближения к полюсам. То же самое справедливо для приливов малой высоты у некоторых побережий. Причиной тому – другой фактор земного происхождения – собственные колебания бассейнов.
Собственные колебания океанских бассейнов
Не так-то просто понять, что такое собственное колебание. Тем не менее нам необходимо уяснить смысл этого понятия. В противном случае мы не поймем, что такое приливы.
Буквально колебание означает «движение то вперед, то назад или то вверх, то вниз». Что такое колебание в приложении к океанографии, можно проиллюстрировать следующим классическим примером.
Возьмите обычный таз для мытья посуды и налейте в него воду. Наклоните или потрясите его. Вода в тазу начнет раскачиваться, и ее движение будет напоминать качание маятника. Движение это будет продолжаться в определенном ритме и с определенной длиной волны еще долго после устранения первоначального импульса. Когда волнение наконец успокоится, попробуйте наклонить или толкнуть таз точно так же, как и в первый раз, и вся картина движения воды повторится в том же точно ритме и с той же длиной волны. Вы также заметите, что вода поднимается выше всего по краям таза, а в центре его остается неподвижной. Здесь приходит в голову простая аналогия с детскими качелями, когда доска высоко взлетает и низко опускается по краям, а в середине неподвижна. А теперь повторите этот опыт с каким-нибудь меньшим, но более глубоким сосудом. Произойдет то же самое: вода будет раскачиваться назад и вперед в одном и том же ритме. Но в меньшем резервуаре движение быстрее – формирующимся волнам приходится проделывать меньший путь, – и вы обнаружите значительные различия колебаний в двух разных сосудах.
Итак, из наших несложных опытов мы можем заключить, что в каждом водном бассейне существует собственный установившийся ритм колебаний и почти неподвижный центр, или «узел», колебаний. Это – «собственный период колебаний», называемый также «тоном», по аналогии с гитарной струной, продолжающей вибрировать на одной ноте, т. е. одной звуковой волне, еще долго после того, как ее задели.
Наши наблюдения за поведением воды в небольшом сосуде мы можем применить к приливам. Приливы постоянно тревожат и приводят в движение воды океанов. И каждый водный бассейн имеет свой собственный период колебаний, свой особый тон. Возвращаясь к нашему эксперименту, мы можем сравнить наш больший сосуд с Северной Атлантикой, а меньший – с Мексиканским заливом. И представьте теперь себе, как непрерывно раскачивается вода в каждом из этих водоемов в ритме, характерном для размеров и глубины каждого из них.
Ну а теперь нетрудно понять, что, если период колебаний совпадает с лунным периодом, т. е. если волна проходит свой путь назад и вперед за 12 часов вместе с лунной приливной волной, мы будем иметь усиление полусуточного прилива, как, например, в Северной Атлантике. Но (и это «но» очень существенно) новейшие исследования океанского дна показали, что Северная Атлантика, как и все остальные океаны, представляет собой не единый бассейн, а несколько отдельных океанских бассейнов. Мировой океан состоит из 45 главных бассейнов. Каждый из них имеет свой собственный период колебаний. В одних случаях собственный период колебаний бассейна совпадает с приливным периодом, в других – не совпадает. Период колебаний в океанском бассейне, примыкающем к заливу Фанди, точно совпадает с лунным периодом. Это еще одна причина, почему приливы в заливе Фанди (и в других зонах больших приливов) достигают необычайной высоты.
Все остальные явления, которые мы наблюдали в нашем эксперименте с тазом, приложимы, к океанам. Как и у краев таза, у берегов океана вода поднимается и спадает особенно заметно. И, по существу, нет никакого движения в центре, или узле, отчего и возникает поразительное различие между высотой приливов в разных местах. Так не знает приливов о. Таити, расположенный в узле колебаний Тихоокеанского бассейна.
Теперь предположим, что период колебаний какого-то моря не совпадает с лунным полусуточным периодом, а имеет совсем другую, скажем 24-часовую, продолжительность. В таком случае собственные колебания бассейна будут прежде всего отзываться на приливообразующие силы, имеющие точно такой же период. В результате полусуточные приливы будут относительно невелики.
Итак, мы обсудили четыре фактора, влияющие на приливы: 1) притяжение Солнца и Луны и изменение их положения; 2) центробежная сила; 3) очертания побережий континентов и 4) собственные колебания воды в различных океанских бассейнах. Все они вместе взятые и создают то сложное сочетание условий, которому обязано великое разнообразие приливов на нашей планете.
Цунами
Проснувшись утром 1 апреля 1946 г., жители Хило на о. Гавайи не поверили своим глазам: город был буквально перевернут вверх ногами. Дома лежали опрокинутые, дороги и пляжи исчезли, железнодорожный мост сдвинуло чуть ли не на 300 м вверх по течению, и по всей опустошенной местности валялись каменные глыбы весом по нескольку тонн.
Это был результат смещения дна океана, произошедшего на расстоянии 4000 км от Хило – в районе Алеутских островов. Этот толчок породил череду волн, которые промчались через Тихий океан со скоростью свыше 1100 км/ч, достигая высот от 7,5 до 15 м там, где они набегали на берег. Это явление многие называют «приливной волной».
Такие происшествия отмечаются с тех пор, как существует письменная история. Предполагается, что около 1500 г. до н. э. подобная волна затопила остров Крит в Эгейском море. Группа греческих и американских специалистов приступила к поискам древнего города Хелике в Коринфском заливе, который был затоплен в 373 г. до н. э. В 358 г. н. э. огромная волна накатилась на восточное побережье Средиземного моря, вышвырнув корабли на крыши домов Александрии и потопив несколько тысяч жителей этого города.
Термин «приливная волна» к таким случаям применять ошибочно. Явления, о которых мы сейчас упоминали, не могут считаться приливной волной. Они не вызваны ни Солнцем или Луной, ни какими-либо другими силами приливной природы. Они порождены подводным землетрясением, извержением вулкана или смещением земных пластов на дне океана. Волну, возникающую в результате этих причин, называют японским словом «цунами» (буквально означающим «большая волна в гавани»).
Волны такого происхождения распространяются радиально из точки, где они возникли, с большими интервалами и с устрашающей скоростью. В то время как расстояние между обычными морскими волнами приблизительно 100 м, гребни волн цунами следуют друг за другом через 180 км и более, а иногда даже через 1200 км. Поэтому прохождение каждой такой волны сопровождается обманчивым затишьем. Когда первая волна в Хило схлынула, многие жители спустились к берегу, чтобы определить масштабы разрушений, – и были поглощены следующей волной.
Если скорость обычной ветровой волны может достигать 100 км/ч, то волны цунами движутся со скоростью реактивного самолета – от 900 до 1500 км/ч. Разумеется, они более опасны на пологих побережьях, чем на крутых. Над большими глубинами открытого моря они едва заметны, но, набегая на пологий берег, они часто достигают высоты 15–30 м.
Штормовые нагоны
Даже невысокие приливные волны ускоряются и увеличивают свою высоту на мелководных участках или в узких каналах; и при понижении атмосферного давления, которое сопутствует тропическому урагану, уменьшается вес столба атмосферы, давящего на море, отчего уровень моря поднимается.
Даже слабый прилив, если он усилен ветром, может произвести на суше ужасающие разрушения. Такие волны называют «штормовыми нагонами». Они наблюдаются главным образом в Карибском море, в районе Мексиканского залива и у южных берегов Азии, где тропические ураганы и штормы – обычное явление.
Жители берегов Бенгальского залива постоянно страдают от подобных стихийных бедствий.
Штормовые нагоны случаются не только в южных районах, что доказали ураганы, налетевшие на Новую Англию в 1938 г. Во время этого шторма вода в вершине залива Наррагансетт поднялась более чем на 3 м, затопив город Провиденс и окрестные населенные пункты. Погибло 600 человек. В 1953 г. штормовые нагоны унесли 2000 жизней в Западной Европе.
Цунами и штормовые нагоны по своей сути случайные явления природы, и предсказать их невозможно. Однако известны и другие капризы в поведении океанов, которые непосредственно связаны с приливами.
Приливные боры и реверсивные водопады
Боры (от древнескандинавского «bara», означающего «волна») образуются в тех случаях, когда прилив достигает эстуария, или устья, реки. Здесь, на мелководье, стиснутые с обеих сторон сужающимися берегами воды прилива поднимаются необычно высоко и значительно ускоряют свое движение. Иногда песчаная отмель или естественная преграда у входа в устье задерживает воду, что приводит к ее накоплению, а затем внезапному обрушиванию в виде водопада.
В устье Амазонки это явление носит название «поророка». С берегов реки поророка выглядит как водопад 2 км длиной и более 7 м высотой, несущийся вверх по течению сплошной вертикальной стеной с грохотом, разносящимся на 30–40 км. Поророка продвигается вверх по реке на 360 км, т. е. дальше, чем на какой-либо другой реке мира.
Другой знаменитый бор наблюдается в воронкообразном устье реки Фучуньцзян в Китае. По статистическим данным, бор на реке Фучуньцзян имеет фронт около 2 км в длину и от 4,5 до 7,5 м в высоту, в зависимости от силы прилива. Подсчитано, что с этим бором, который движется вверх по реке со скоростью 22 км/ч, проносится почти 2 млн т воды. Рев его слышен за 30 км. Местные жители на умно построенных сампанах быстро передвигаются вместе с бором вверх по реке, подобно тому как любители сёрфинга ухитряются, стоя на доске, выплыть на берег на гребне прибойной волны.
Вулкан Кракатау до и после извержения
Бор, хотя и менее эффектный, наблюдается и на многих других реках: на реке Северн в Англии, в заливе Кука на Аляске и на реке Птикодьяк, впадающей в северную часть залива Фанди.
26 августа 1833 г. погибли 200 000 человек при извержении вулкана Кракатау, Индонезия. Вызвавшие цунами взрывы были слышны на расстоянии 4000 км, а влияние на атмосферу дало о себе знать во всем мире.
21марта 1857 г. произошло землетрясение в Токио, вызвавшее пожары, разнесенные по всему городу циклонными ветрами, скорость которых достигала 100 км/ч.
В огне погибли до 107 000 человек.
16 декабря 1857 г. произошло землетрясение в Калабрии, Италия. Погибли более 10 000 человек. Целые деревни были разрушены оползнями и поглощены исполинскими трещинами, возникавшими на поверхности земли.
3июля 1863 г. произошло землетрясение, почти полностью разрушившее Манилу, Филиппины. Погибли около 1000 человек.
13 августа 1868 г. произошло землетрясение на границе двух стран – Эквадора и Перу. Оно унесло жизни 25 000 человек.
1 августа 1874 г. на американский штат Канзас обрушились не виданные доселе полчища саранчи.
Единственное насекомое из Библии
О бедах, связанных с саранчой, известно уже с давних времен. Начиная с нашествия насекомых на Египет, о котором говорится во Второй Книге Моисея, саранча упоминается в Библии примерно 30 раз.
От прожорливых насекомых страдали и ацтеки, жившие на территории сегодняшней Мексики. Но на 1 августа 1874 г. об этом мало кто знал из жителей американского штата Канзас.
После нескольких лет засухи и плохого урожая фермеры ждали перемен.
Однако их надеждам не суждено было сбыться: на их земли обрушилась саранча. Полчище, растянувшееся на 450 км, уничтожало все на своем пути по американскому Среднему Западу. Все кругом было покрыто шевелящимся ковром толщиной в несколько сантиметров. Паразиты пожирали все: кукурузу, овощи, фрукты, злаковые растения и чеснок, издавая при этом треск, который был слышен на многие километры. Потом они принимались за листву и кору деревьев. Им пришлись по вкусу даже деревянные ручки, кожаные уздечки, планки заборов и одежда фермеров.
Сожрав все это (на что уходило 2–3 дня), саранча выбирала себе следующую цель. Но насекомые успевали отложить яйца, поэтому катастрофа была запрограммирована и на следующий год. 80 тыс. ферм в результате разорились. И только благодаря помощи, поступавшей из всех штатов, голода на Среднем Западе удалось избежать.
15 мая 1875 г. землетрясение в Колумбии, длившееся всего 45 сек, унесло жизни 16 000 человек. Одновременно с землетрясением произошло извержение вулкана, расположенного рядом с городом Кукуто.
3апреля 1881 г. произошло землетрясение на о. Сцио в Эгейском море, Турция. Погибли 7000 человек и 20 000 получили ранения.
23 февраля 1887 г. землетрясение, прокатившееся по Французской и Итальянской Ривьере, унесло жизни 2000 человек. Толчки ощущались далеко на севере – в Швейцарии. Сейсмографы отметили колебания даже в Вашингтоне.
Волны у побережья Канагава. Худ. Хокусай
В октябре 1887 г. в результате сильного наводнения на реке Хуанхэ, Китай, 2 млн человек утонуло и умерло от голода.
20 апреля 1888 г. прошел сильный град в городе Мурадабад шт. Утар-Прадеш, Индия.
В 1888 г. над Восточным побережьем США пронесся жуткой силы снежный буран, сопровождаемый ураганным ветром и бушевавший на протяжении 30 часов. Буря намела 6-метровые сугробы.
15 июня 1896 г. цунами, вызванная землетрясением на подводном кратере Тускарора у побережья Японии, унесла жизни 28 000 человек. На о. Хонсю шла подготовка к религиозному празднику. Вечером неожиданно перестал идти дождь. Затем со стороны берега послышался грохот, похожий на пушечные залпы. Волны высотой от 6 до 33 м со скоростью 800 км/ч обрушились на побережье и на 160 км вторглись в глубь суши. Грохочущие воды разрушили десятки приморских городов. В живых остались несколько стариков, которые покинули праздник, чтобы сыграть на одном из холмов в игру «го».
Событие в фокусе. Наводнение!
Среди природных катастроф по своим разрушительным последствиям оно стоит в первом ряду. По данным ЮНЕСКО, за последнее столетие в мире от них погибло 9 млн человек, в то время как от землетрясений и ураганов – 2 млн. Помимо неисчислимых человеческих жертв, огромен материальный ущерб, наносимый наводнениями. В некоторых странах среднегодовые убытки могут составлять до 15 % валового продукта. В чем же причины столь трагического положения? Попробуем их определить.
Наводнения происходят во все сезоны года и практически повсеместно. От них страдают жители речных долин и морских побережий, горных районов и, как это и ни удивительно на первый взгляд, пустынь. Сокрушительному воздействию водной стихии подвержены как обширные сельские районы, так и крупнейшие столицы мира.
На одной и той же территории наводнения могут происходить каждый год и даже несколько раз в году. Большая опасность заключается и в том, что часто они начинаются внезапно, и люди не успевают к ним подготовиться. Наводнениями могут быть затоплены тысячи квадратных километров земель, вода на них может стоять до нескольких месяцев.
По имеющимся оценкам, от 2 до 10 % общей площади стран, на которой сконцентрировано 1–5 % населения, подвержены периодическим затоплениям наводнениями. В СССР наводнения могли происходить на 500 тыс. км2 (в России эта территория меньше), в США – на 280 тыс. (3 %), в Индии – на 250 тыс. (7,6 %), в Бразилии – на 300 тыс. (3,5 %) во Франции – на 10 тыс. км2 (1,8 %).
Наводнение 1908 г. в Москве
Тяжелые последствия наводнений связаны не только с природными причинами, но и с хозяйственной деятельностью человека. Более подробно мы остановимся на этой проблеме позднее. В целом же следует подчеркнуть, что серьезный ущерб, наносимый наводнениями, приводит к ухудшению экономического положения на огромных территориях, от отдельных районов до целых государств. Сдерживаются темпы хозяйственного развития, повышается стоимость жизни, на страны обрушиваются голод и страшные эпидемии. Но всегда ли было так?
Большинство книг, посвященных описанию исторических паводков и половодий, начинаются с упоминания о библейском Потопе, приведшем, по преданию, к гибели всего человечества. В живых Бог оставил праведника Ноя, который спасся со своей семьей на построенном им ковчеге. Древние египтяне оставили сказания о катастрофических разливах Нила, происшедших в 3000 и в 3500 гг. до н. э. Повествования о подобного рода бедствиях есть и в эпосе народов Латинской Америки.
Вероятность таких наводнений, охватывающих огромные территории, находит подтверждение в последних археологических исследованиях.
Почему происходят наводнения
Наводнением называется различное по длительности временное затопление суши водой в результате действия природных или антропогенных причин.
Половодья – ежегодно повторяющееся сезонное длительное и значительное увеличение водности рек, сопровождающееся повышением уровня воды в русле и затоплением поймы, – одна из основных причин наводнений.
Реки умеренного пояса разливаются во время весеннего снеготаяния на равнинах. Реки, берущие свое начало в высокогорных районах, могут разливаться при интенсивном таянии питающих их ледников. Большие затопления пойм во время половодий наблюдаются на большей части территории бывшего СССР, в Северной Америке, Северной и Восточной Европе. При таянии снежного покрова на водосборе и речного льда уровень воды может подниматься от 1–2 до 10–20 и более метров в зависимости от величины реки, условий накопления и таяния снега. Ширина затопляемой территории нередко достигает многих километров.
Длительность половодья также зависит от длины и ширины русла рек, высоты снежного покрова, дружности весны и ряда других причин и может составлять от нескольких дней до 3 и более месяцев.
Большой объем половодья наблюдается в долинах высокогорных районов, где весенне-летний сток формируется за счет таяния высокогорных снегов и ледников. Особо тяжелые последствия имеют половодья в том случае, если период таяния снега и льда в горах совпадает с таянием снежного покрова в долинах. Если же таяние в горах запаздывает по времени, то половодье будет иметь затяжной характер.
Половодье может принимать катастрофический характер, если инфильтрационные свойства почв значительно уменьшились за счет перенасыщенности ее влагой из-за обильных осенних дождей и глубокого промерзания в суровую зиму. К значительному увеличению половодья могут привести весенние дожди, когда пик весеннего половодья совпадает с пиком весеннего паводка.
Дождевые паводки представляют собой не меньшую опасность, чем половодья. В отличие от половодий, они могут повторяться несколько раз в году. Их частота и интенсивность главным образом зависят от частоты и интенсивности дождей в весенне-осенний период или оттепелей зимой, приводящих к таянию снега и льда и выпадению зимних дождевых осадков. Сток рек значительно возрастает, уровень воды в них повышается, что приводит к затоплению местности. Особо следует выделить наводнения, порождаемые внезапными паводками. Причиной их служат ливни, вызываемые циклональной деятельностью. Наиболее мощные ливни приносят тропические циклоны. Особенность таких паводков заключается в неожиданности их начала и конца, значительной интенсивности и кратковременности. Иногда суточное количество ливневых осадков достигает 1000 мм. Они не только формируют паводки на реках, но и образуют высокий слой поверхностного стока, что ведет к возникновению селей и оползней в горах, активизирует эрозионные процессы на равнинах.
Ежегодно над океаном формируется от 80 до 100 тропических циклонов. От вызванных ими ураганов и наводнений ежегодно гибнет около 250 тыс. человек, а экономический ущерб приближается к 7 млрд долларов. Установлено, что от катастрофических последствий тропических циклонов постоянно страдает население 50 стран.
В нашей стране от дождевых паводков страдают практически все регионы.
С незапамятных времен страдают от паводковых разливов рек жители Индо-Гангской низменности. Основная причина паводков в Индии – ливни, приносимые с юго-востока Индийского океана муссонами во второй половине весны. Очень часто проливные дожди длятся почти непрерывно до конца осени. Всего в этой стране затопляется около 25 млн га земель. В XX в. зарегистрировано более 10 катастрофических наводнений на Ганге, Брахмапутре, Дамодаре и других реках страны.
Паводки – поистине национальное бедствие для жителей Китая. За два последних тысячелетия на территории этого государства в среднем раз в 2 года происходило крупное наводнение. Основная причина паводков – интенсивные и длительные ливни.
В XX в. самым катастрофическим наводнением считается паводок 1931 г. в бассейне Янцзы – самой большой реки Китая. Под водой оказалось 300 тыс. км2, из них более 5 млн га составляли сельскохозяйственные угодья. Погибли 140 тыс. человек.
Серьезные разрушения и жертвы среди населения вызывают разливы другой крупной реки – Хуанхэ. Известно, что во время паводка 1887 г. водами реки было затоплено 78 тыс. км2, погибло около 1 млн человек.
Печальная участь азиатских государств не миновала и страны Старого Света.
В 1878 г. был зарегистрирован необычайный по силе паводок на Дунае и его притоках. Пострадало население нескольких стран, по территории которых протекает эта величественная европейская река, – Австрия, Венгрия, южные районы Западной Германии. В следующем году разлившийся приток Дуная Тисса полностью уничтожил венгерский город Сегед.
Во Франции многочисленные реки, протекающие по территории страны, могут затопить более 1 млн га земель, что составляет 1,8 % всей ее площади. От наводнений страдают 2 % населения (более 1 млн человек). Наиболее катастрофические наводнения происходили в долинах Луары, Гаронны, Роны.
В Северной Италии большие беды приносят разливы По и Арно. В XX в. катастрофические наводнения произошли в 1951, 1952, 1966, 1968 гг. В результате проливных дождей осенью 1966 г. По и Арно вышли из своих берегов и затопили обширные площади сельскохозяйственных угодий в Ломбардии, Пизу, Венецию, Флоренцию. В Венеции на площади Святого Марка высота стояния воды достигала 2 м. Необычайно сильно пострадала Флоренция. По описанию очевидцев, после спада паводка город представлял собой огромное болото. Большинство жилых построек, зданий, государственных учреждений, магазинов и промышленных предприятий были разрушены или сильно повреждены. Большой ущерб был нанесен дворцам, музеям, картинным галереям; стихия уничтожила множество произведений живописи и скульптуры, архитектурных памятников – того, чем славен этот красивейший город. Во время наводнения погибло 36 человек.
Из всех видов наводнений паводки, в особенности внезапные, представляют в США самую большую опасность. Наиболее часто им подвергаются земли в бассейне Миссисипи, особенно в ее нижнем течении и в долинах ее притоков – Миссури, Огайо, Теннесси и др. Трагические последствия носят разливы Колорадо, Колумбии, Сакраменто, Рио-Гранде и их притоков.
Одним из наиболее катастрофических наводнений был паводок на Теннесси, затопивший город Чаттануга в 1867 г. Через 17 лет наводнение в нижнем течении Миссисипи в районе Нового Орлеана продолжалось 107 дней. Сильно пострадал этот город во время бедствия в 1927 г. Это наводнение можно считать выдающимся в истории США. Уровень воды у города Кейро составил 17 м над местным ординаром. Защитные дамбы были разрушены более чем в 200 местах, и водный поток высотой 4 м, переливаясь через промоины в них, опустошил в речной долине обширнейшие территории.
В 1977 г. по территории США прокатилась целая серия катастрофических паводков. В штате Пенсильвания наблюдался паводок, который бывает раз в 500 лет.
Заторно-зажорные наводнения. В конце осени и в начале зимы на реках северного полушария часто происходит образование внутриводного льда во время ледостава. При большой скорости течения и низких температурах воздуха вода охлаждается по всей глубине. Если температура воды в этот период опускается даже на незначительную величину ниже нуля, образуется внутриводный лед. Всплывая на поверхность, он создает рыхлые скопления – шугу. После установления ледяного покрова данный процесс заканчивается. Однако ранее образованная шуга, приносимая течением с верхних участков реки, всплывает, задерживается и нарастает под ледяным покровом, особенно у его кромки и за полыньей. Такое явление называется зажором. Вследствие зажора вышележащие участки поймы могут подвергаться затоплению из-за повышения уровня воды. Бывает так, что затопленные участки поймы находятся под водой в течение 1–2 месяцев. В таких случаях вода, залившая пойму, замерзает, что вызывает дополнительные трудности при восстановительных работах после спада уровня.
В 1976 г. в СССР был издан «Каталог заторных и зажорных участков рек», в котором отмечено более 2400 таких участков, расположенных на 1167 реках. В азиатской части страны возможность зимних наводнений из-за перечисленных выше причин имеется на 570 реках и в европейской части нашей страны – на 600 реках.
Завальные наводнения. Экзогенные процессы, такие, как эрозия и денудация, в горах наиболее активны. Накопляемый в большом количестве обломочный материал на крутых эродированных склонах приводит к возникновению обвалов и оползней. Эти процессы максимально активизируются при повышении сейсмической активности. Образованные в результате обвалов, осыпей или схода лавовых потоков естественные дамбы, перегораживающие в узких горных долинах и ущельях речные русла, в конце концов прорываются под усиливающимся напором воды подпруженной реки или озера. Часто из-за прорыва в горах образуется селевый поток, который обладает огромной разрушительной силой. Подпруживание горных рек и озер может происходить в результате схода селей, причиной чему служат сильные ливни. Не менее опасны в этом отношении сходы снежных лавин зимой там, где реки не замерзают.
Морские нагонные наводнения. Мы рассмотрели природные причины наводнений в речных долинах, на которые приходится большая часть ущербов. Однако не меньшую угрозу морским побережьям, лежащим на пути движения циклонов, представляют нагонные наводнения.
Сильные ветры при прохождении циклонов вызывают усиленное движение морских вод в сторону наветренного берега за счет механического воздействия ветра на водную поверхность и образования на ней уклона в сторону берега. В результате у побережья наблюдается подъем уровня воды. Кроме того, в центре циклона образуется так называемая длинная волна; ее длина во много раз превышает глубину акватории, где она движется. Высота волны значительно возрастает при прохождении в шельфовой – прибрежной мелководной – зоне. К этому же могут приводить сужения морских заливов. Одновременно последствием циклонов могут быть сейши, представляющие собой свободные колебания воды без ее перемещения вдоль поверхности около одного или нескольких центров, происходящие по инерции после ослабления ветра. Поэтому морские нагоны – чаще всего следствие совместного действия ветровых нагонов, длинных волн и сейш.
Однако для наводнения необходимо еще одно условие – низкий и пологий берег, такой, как в восточной части Финского залива у Санкт-Петербурга или в Нидерландах, где 25 % территории суши лежит ниже уровня моря. В таком случае подъем уровня воды при нагоне приводит к очень большим затоплениям.
В устьях рек, имеющих небольшой уклон в сторону моря и большую глубину, нагонные волны могут распространяться вверх по течению на значительные расстояния. Нагон как бы подпруживает реку в ее нижнем течении, вызывая подъем уровня воды, и, соответственно, затопление. На Амазонке – крупнейшей реке Южной Америки – нагонная волна, образуемая океанским приливом, проходит из устья вверх с большой скоростью на расстояние до 1400 км, а ее высота достигает порой 3 м. Разрушительное воздействие нагонов усиливается, если приход циклона совпадает по времени с приливом.
Крупнейшее нагонное наводнение XX в. произошло в дельте Ганга в 1970 г. Причиной его был циклон, пришедший с океана. 10-метровая морская волна, гонимая штормовым ветром, скорость которого составляла 200 км/ч, повернула вспять священную реку. Вышедшие из берегов воды Ганга затопили около 20 тыс. км2. С лица земли были снесены десятки городов и сотни деревень, а число жертв, по некоторым оценкам, составило 1,5 млн человек. Поскольку наводнением были уничтожены почти все колодцы, большинство пострадавших районов остались без питьевой воды. Сотни тысяч людей умерли от голода и вспыхнувших эпидемий холеры и тифа.
В нашей стране наиболее разрушительные по своим последствиям нагонные наводнения отмечались в Санкт-Петербурге. С момента основания Петербурга и по настоящее время город подвергался наводнениям более 300 раз. С 1703 г. зарегистрировано 264 наводнения, когда вода поднималась выше 1,5 м над ординаром – отметкой среднего уровня моря, определенной за период столетних наблюдений за ним на пристани в районе Горного института.
Катастрофические наводнения отмечались в 1703 и 1777 гг. Но одним из самых трагических по своим последствиям был штормовой нагон в 1824 г. Уровень воды в Финском заливе и в устье Невы поднялся выше 4 м.
В поэме А. С. Пушкина «Медный всадник» описано наводнение именно того страшного года. Другим памятником того трагического события можно назвать братские могилы на одном из городских кладбищ. На них начертано: «Читатель, се памятник божья наказания. Здесь сокрыто 160 тел обоего пола православных христиан и невинных младенцев казенного чугунно-литейного завода, утопших в день страшного наводнения 1824 г., ноября 7 дня».
Наводнение, происшедшее в Ленинграде в 1924 г., по своим катастрофическим последствиям лишь немногим уступало бедствию столетней давности. Вечером 23 сентября при ураганном ветре, скорость которого достигала 42 м/с, уровень воды вышедшей из берегов Невы поднялся почти на 370 см выше ординара. Рушились деревянные здания и мосты, полностью остановилось движение городского транспорта.
Цунами
Наводнения, вызываемые волнами цунами, – страшный бич Тихоокеанских побережий Азии и Америки. Цунами – это длинные гравитационные волны, образующиеся в 99 % случаев при подводных океанических землетрясениях.
Существует ряд особенностей, делающих наводнения от цунами наиболее опасными. Из-за трудностей определения эпицентра цунами и большой скорости ее перемещения на оповещение и эвакуацию населения на побережье остаются буквально считаные минуты. Поэтому очень часто население оказывается неподготовленным. Наводнения, порождаемые цунами, характеризуются неожиданностью, цикличностью, быстротечностью и колоссальной разрушительной силой. В настоящее время известно более 1000 случаев, когда они сопровождались большими человеческими жертвами и огромными разрушениями.
Человеческий фактор наводнений
Причины наводнений, обусловленные антропогенными факторами, можно разделить на прямые и косвенные. Такие виды хозяйственной деятельности на водосборах, в речных долинах и на поймах, как сведение лесов, осушение болот, промышленная и жилищная застройка, ведут к изменению гидрологического режима рек, в основном за счет увеличения поверхностной составляющей стока, что непосредственно не приводит к возникновению наводнений, но в период прохождения пиков паводков и половодий угроза наводнений значительно возрастает. Эти причины являются косвенными. Прямые антропогенные причины приводят непосредственно к большим затоплениям и связаны с проведением различных гидротехнических мероприятий и разрушением плотин.
Одна из причин увеличения максимального стока в период прохождения паводков и половодий – сведение лесов, в результате чего уменьшается инфильтрационная способность почв и увеличивается интенсивность их смыва. Увеличению стока способствует также сокращение суммарного испарения в связи с прекращением перехвата осадков лесной подстилкой и кронами деревьев, задерживающих до 30 % суммы осадков. Установлено, что после полного сведения лесов в зависимости от географических условий максимальный поверхностный сток возрастает на 250–300 %.
Большое влияние на увеличение максимального стока оказывает не всегда продуманное ведение сельского хозяйства. Осушение болот – естественных аккумуляторов стока – приводит к возрастанию его максимальных значений от 20–40 до 130–160 %. В результате снижения инфильтрационных свойств почв в процессе их сельскохозяйственного использования за период с IX по начало XX в. в центральных районах России поверхностный сток, по некоторым расчетам, увеличился в 4 раза, режим рек стал менее благоприятным, с более интенсивными паводками и низкой меженью. На почвах с легким и средним механическим составом в результате периодической распашки развивается эрозия, также ведущая к увеличению максимального стока. Продольная распашка склонов, переуплотнение полей при использовании тяжелой техники, переполивы в результате нарушения норм орошения – все это факторы, усиливающие интенсивность паводков и половодий.
Уменьшение инфильтрационных свойств почв – одна из основных причин усиления максимального стока в городах. Это связано с ростом водонепроницаемых покрытий и застройкой. В Канаде и Японии максимальные расходы паводков в городах возросли за последние десятилетия в 2,5 раза, в Великобритании – в 1,5 раза.
30 мая 1897 г. в США промчался смерч «Ирвинг» (по наименованию уничтоженного им города на севере Канзаса), оставив после себя огромное количество раненых.
Дождливым летом 1897 г. разлились притоки Амура, Россия. Из строя вышла Забайкальская железная дорога.
16мая 1898 г. над австралийским городком Иден (в русском переводе – «Эдем», или «рай») пронесся водяной смерч высотой 1528 м и диаметром 3 м.
1900
В начале сентября на город Галвестон, шт. Техас, США, обрушился ураган разрушительной силы. Позже город подвергся штормовому наводнению. Погибло 6000 человек.
1901
9 марта на Тунис, Сицилию, Германию обрушилась красная пыльная буря.
Начавшаяся на севере Сахары и к утру следующего дня распространившаяся на все побережье Туниса и Триполитании буря, имевшая скорость урагана, позже достигла Северной Италии, а ночью распространилась на все
Восточные Альпы, покрыв снега и ледники плотным слоем красной пыли. К утру 11 марта буря перевалила через Альпы и двинулась на север. К середине дня она распространилась на Северную Германию и, быстро затихая, достигла Дании, Балтийского моря и России. Общий вес пыли, выпавшей во время бури в Европе, примерно равен 1 800 000 т.
22 мая в Уральске, Россия, во время грозы шаровая молния убила молодую девушку.
Улицы Уральска были полны народа. Налетевшая гроза заставила нескольких молодых парней и девушек спрятаться в сенях дома. Одна девушка уселась на пороге, спиной к выходу. Внезапно раздался громовой удар, и возле двери появился ослепительный огненный шар. Девушка инстинктивно пригнулась, и шар, скользнув по ее плечу, вошел в сени и оттуда в комнату. Там он все перевернул вверх дном, разворотил печь, пробил стену, вырвал и искорежил каменную решетку и, разбив окно, вылетел во двор. Входная дверь была сорвана с петель. В обивке зияли две дыры по 18 см.
Девушка была мертва. Часть молодых людей, ослепленных и оглушенных, выбралась во двор, часть лежала на полу без сознания. Вдоль спины убитой и по ее левому бедру тянулся черный след. Возле пальца на ноге была маленькая ранка с капелькой крови. Левый ботинок был разорван по всей длине, а в чулке белела маленькая дырочка.