Дальнейшие задачи были посложнее. Необходимо было найти подходящую и свободную (причем желательно по всему миру) полосу частот. В результате был выбран подход, противоположный тому, который использовался в мобильных телефонных сетях. Вместо дорогостоящих лицензируемых частот системы 802.11 работают на нелицензируемых полосах частот, например ISM («Industrial, Scientific, and Medical» — «промышленные, научные и медицинские»), устанавливаемых МСЭ-R (например, 902–928 МГц, 2,4–2,5 ГГц, 5,725–5,825 ГГц). Этот диапазон частот разрешено использовать любым устройствам, но мощность их излучения должна быть ограничена, чтобы различные устройства не мешали друг другу. Конечно, из-за этого 802.11-передатчики иногда начинают конкурировать за частоты с беспроводными телефонами, системами дистанционного открывания дверей гаража и микроволновками. Так что до тех пор, пока пользователям не понадобится позвонить гаражным дверям, важно все настроить правильно.
Сети 802.11 состоят из клиентских устройств, таких как ноутбуки и мобильные телефоны, а также точек доступа (access points, AP) — инфраструктур, располагаемых в зданиях. Точки доступа иногда называются базовыми станциями (base stations). Они подключаются к проводной сети, через них осуществляется весь обмен данными между клиентами. Клиенты, находящиеся в зоне радиодоступа, могут также взаимодействовать напрямую: например, в случае с двумя компьютерами в офисе без точки доступа. Подобная схема называется динамической (самоорганизующейся) сетью (ad hoc network) и используется намного реже сети с точкой доступа. Оба варианта показаны на илл. 1.22.
Илл. 1.22. (а) Беспроводная сеть с точкой доступа. (б) Динамическая сеть
Передача данных по стандарту 802.11 осложняется условиями беспроводной передачи, которые меняются при малейших изменениях окружающей среды. На используемых для 802.11 частотах радиосигналы могут отражаться от твердых тел, так что приемник может регистрировать несколько отраженных сигналов, пришедших с различных направлений. Такие сигналы могут заглушать или усиливать друг друга, в результате чего итоговый сигнал сильно искажается. Этот феномен, показанный на илл. 1.23, называется многолучевым замиранием (multipath fading).
Илл. 1.23. Многолучевое замирание
Основной способ преодоления меняющихся условий беспроводной передачи — разнесение путей (path diversity), то есть передача информации по различным независимым путям. В результате информация, скорее всего, попадет к получателю, даже если на одном из путей возникнут проблемы вследствие замирания. Эти независимые пути обычно встраиваются в используемую в аппаратном обеспечении схему цифровой модуляции. Для этого применяются всевозможные варианты: использование разных частот в пределах допустимой полосы, прокладывание различных путей между разными парами антенн и повтор битов через неравные промежутки времени.
Все эти методики использовались в различных версиях 802.11. В первоначальном стандарте (1997) описывалась работающая на скорости 1 или 2 Мбит/с беспроводная LAN, перепрыгивающая с частоты на частоту или распределяющая сигналы по разрешенному для нее диапазону частот. Практически сразу же начали поступать жалобы на слишком медленную скорость, и началась работа над более быстрыми стандартами. Архитектура с «размытием» спектра частот позднее была улучшена и стала стандартом 802.11b (1999), работающим на скорости до 11 Мбит/с. Позднее стандарты 802.11a (1999) и 802.11g (2003) были переведены на другую схему модуляции сигнала — OFDM (Orthogonal Frequency Division Multiplexing — мультиплексирование с ортогональным частотным разделением каналов). При этом подходе широкая полоса частот делится на множество узких полос, через которые параллельно отправляются различные биты. Улучшенная схема (представленная в главе 2) позволила повысить скорость передачи 802.11a/g до 54 Мбит/с. Это немалый прирост, но пользователям этого было недостаточно. Для обеспечения постоянно растущих нужд необходима большая пропускная способность. Следующие версии стандарта предоставляют еще более высокие скорости передачи данных. Повсеместно развертываемый сейчас стандарт 802.11ac может работать на скорости 3,5 Гбит/с. А более новый 802.11ad способен достигать 7 Гбит/с, правда, только в пределах одной комнаты, поскольку радиоволны на используемых им частотах плохо проходят сквозь стены.
Беспроводные сети имеют широковещательную природу. Поэтому существует возможность конфликта нескольких сигналов, отправленных одновременно, что может помешать их приему. Для решения этой проблемы в 802.11 используется CSMA (Carrier Sense Multiple Access — множественный доступ с контролем несущей). Этот метод основан на идеях классической проводной сети Ethernet, которые были взяты из еще более ранней беспроводной сети ALOHA, разработанной на Гавайях. Прежде чем отправлять сигнал, компьютер ожидает в течение короткого случайного интервала времени и откладывает передачу, если обнаруживает, что кто-то уже передает сигнал. Такая схема снижает вероятность того, что два компьютера отправят данные одновременно. Впрочем, она не так эффективна, как в случае проводной сети. Чтобы понять почему, взгляните на илл. 1.24. Допустим, компьютер A отправляет данные компьютеру B, но дальность передатчика компьютера A недостаточна, чтобы достичь компьютера C. Если C хочет передать что-то B, он может «прослушивать» эфир на предмет передачи, но это не гарантирует успеха его собственной передачи. То, что C не «слышит» передаваемый A сигнал, может привести к конфликтам. После любого конфликта отправитель должен подождать в течение случайного (но более длительного) промежутка времени и затем попытаться отправить пакет снова. Несмотря на эту и некоторые другие проблемы, данная схема неплохо работает на практике.
Илл. 1.24. Дальность действия одного радиопередатчика может не охватывать всей системы
Еще одна проблема связана с перемещением устройства в пространстве. Когда мобильный клиент удаляется от используемой точки доступа и попадает в зону приема другой точки доступа, нужен какой-то способ при необходимости подключить его к новой точке. Сеть 802.11 может состоять из нескольких ячеек (каждая — со своей собственной точкой доступа) и системы распределения, соединяющей эти ячейки. Система распределения часто представляет собой коммутируемый Ethernet, но в ее основе может лежать и любая другая технология. Клиенты, перемещаясь, ищут точку доступа с лучшим качеством сигнала, чем у текущей, и если находят, могут переключиться на нее. Извне вся эта система напоминает единую проводную LAN.
Тем не менее для стандарта 802.11 мобильность пока что не имеет столь важного значения, как для мобильных телефонных сетей. 802.11 обычно применяется «кочующими» клиентами, меняющими место постоянного расположения, и не используется во время движения. При подобном стиле использования мобильность не так уж необходима. Даже если 802.11 и используется в движении, то только в пределах одной сети, которая охватывает максимум одно большое здание. Чтобы добиться возможности перемещения между различными сетями и технологиями, нужны новые схемы работы. Например, стандарт 802.21, обеспечивающий возможность передачи обслуживания между проводными и беспроводными сетями.
Наконец, остается проблема безопасности. В силу широковещательного характера беспроводной передачи данных ближайшие компьютеры могут с легкостью получать не предназначенные для них пакеты. Чтобы этого избежать, стандарт 802.11 содержит схему шифрования, известную под названием WEP (Wired Equivalent Privacy). Ее цель — добиться безопасности беспроводной сети на уровне проводной. Идея неплохая, но, к сожалению, схема оказалась несовершенной и вскоре была взломана (Борисов и др.; Borisov et al., 2001). Позднее появились новые схемы шифрования с другими криптографическими особенностями, зафиксированные в стандарте 802.11i. Изначально он носил название WPA (Wi-Fi Protected Access — защищенный доступ к Wi-Fi), сейчас используется версия WPA2 и еще более хитроумные протоколы, например 802.1X. Он обеспечивает аутентификацию точек доступа клиентами, а также множество различных способов аутентификации самого клиента точкой доступа.
Стандарт 802.11 произвел революцию в беспроводных сетях, и она продолжается до сих пор. Он широко применяется не только в зданиях, но и в поездах, самолетах, кораблях и автомобилях. Теперь люди могут пользоваться интернетом в дороге, куда и на чем бы они ни ехали. С помощью 802.11 информацией обмениваются и мобильные телефоны, и самые различные виды бытовых электроприборов, начиная от игровых консолей до цифровых видеокамер. К тому же 802.11 постепенно сливается с другими типами мобильных технологий; яркий тому пример — LTE-Unlicensed (LTE-U — LTE на нелицензируемых частотах). Он представляет собой адаптацию сетевой сотовой технологии 4G LTE для работы с нелицензируемым диапазоном частот, в качестве альтернативы принадлежащим ISP точкам доступа Wi-Fi. Мы вернемся ко всем этим мобильным и сотовым сетевым технологиям в главе 4.
6 Калифорния находится на Западном побережье. — Примеч. пер.
7 На момент выхода книги. — Примеч. ред.
8 Или «операторами верхнего уровня». — Примеч. пер.
1.5. Сетевые протоколы
Мы начнем этот раздел с обсуждения целей разработки сетевых протоколов, затем изучим основную концепцию, применяемую при их создании, — разделение на уровни. Далее мы сравним службы, ориентированные на установление соединения, и службы без установления соединений, а также поговорим о примитивах служб, необходимых для их работы.
1.5.1. Цели проектирования
У разных сетевых протоколов зачастую схожие цели проектирования: надежность (способность восстанавливаться после ошибок, сбоев или отказов); распределение ресурсов (совместное использование общего ограниченного ресурса); способность к развитию (поэтапное развертывание усовершенствованных версий протокола с течением времени); безопасность (защита сети от различных типов атак). Рассмотрим в общих чертах все эти цели.