Илл. 8.8. Брандмауэр, защищающий внутреннюю сеть
Брандмауэр работает как пакетный фильтр (packet filter). Он исследует каждый входящий и исходящий пакет. Пакеты, удовлетворяющие определенным критериям, пропускаются. Не сумевшие пройти проверку пакеты удаляются.
Критерии фильтрации обычно устанавливаются правилами или таблицами, где перечислены допустимые и блокируемые отправители и получатели, а также стандартные правила, описывающие, что делать с исходящими и входящими пакетами. В общем случае настроек TCP/IP информация о получателе или отправителе состоит из IP-адреса и номера порта. Номер порта соответствует нужной службе. Например, порт 25 используется для почты, порт 80 — для HTTP. Некоторые порты просто могут быть заблокированы. Например, компания может блокировать поступление входящих пакетов для всех IP-адресов, привязанных к TCP-порту 79. Раньше этот порт широко применялся для получения адресов электронной почты с помощью службы Finger, но сегодня практически не используется, поскольку сыграл не последнюю роль в крупной интернет-атаке 1988 года.
Остальные порты блокируются не так просто. Сложность в том, что сетевые администраторы мечтают об идеальной защите, но не могут блокировать коммуникацию с внешним миром. Второй вариант был бы проще и безопаснее, однако поток жалоб от пользователей шел бы непрерывно. Здесь могут помочь такие решения, как демилитаризованная зона (DeMilitarized Zone, DMZ), показанная на илл. 8.8. DMZ — это часть сети компании, которая находится за пределами периметра безопасности. Сюда допускаются все. Если разместить веб-сервер в DMZ, то сторонние компьютеры будут подключаться к нему, чтобы зайти на сайт компании. При этом брандмауэр можно настроить так, чтобы блокировать входящий TCP-трафик к порту 80, так что компьютеры извне не смогут использовать этот порт для атаки компьютеров внутренней сети. Чтобы управлять веб-сервером, брандмауэр разрешает соединения между ним и компьютерами в сети.
По мере продолжения «гонки вооружений» между разработчиками средств защиты и хакерами брандмауэры становились все более сложными. Изначально они применяли набор правил независимо для каждого пакета, но составлять правила, предоставляющие полезную функциональность и при этом блокирующие весь нежелательный трафик, — задача не из легких. Брандмауэры с контролем состояния соединений (statefull firewalls) сопоставляют пакеты с соединениями и используют поля TCP/IP-заголовков для отслеживания этих соединений. Это позволяет создавать правила, которые, к примеру, разрешают внешнему веб-серверу отправлять пакеты внутреннему хосту, только если перед этим этот хост установил соединение с внешним сервером. Такое правило нельзя было создать при использовании схемы без контроля состояния: она может либо пропускать, либо отбрасывать все пакеты внешнего сервера.
Следующим уровнем сложности по сравнению с контролем состояния является реализация брандмауэром шлюза прикладного уровня (application-level gateway). При этом брандмауэр просматривает содержимое пакетов, не ограничиваясь лишь TCP-заголовками, чтобы узнать, что делает приложение. Это позволяет отделить HTTP-трафик для серфинга в интернете от HTTP-трафика для обмена файлами между пирами. Администратор может написать правила, запрещающие сотрудникам компании обмениваться файлами, но позволяющие заходить на сайты, необходимые для работы. С помощью этих методов исходящий трафик может исследоваться примерно так же, как входящий (например, чтобы важные документы не уходили по электронной почте за пределы компании).
Из всего вышесказанного очевидно, что брандмауэры нарушают стандартную иерархию протоколов. Они являются устройствами сетевого уровня, но также контролируют транспортный и прикладной уровни, чтобы фильтровать данные. Это делает их уязвимыми. Например, брандмауэры ориентируются на стандартную нумерацию портов, чтобы определить, какой трафик находится в пакете. Хотя стандартные порты применяются часто, их используют далеко не все компьютеры и приложения. Некоторые пиринговые приложения выбирают порт динамически, чтобы его было труднее отследить (и заблокировать). Кроме того, высокоуровневая информация скрыта от брандмауэра шифрованием. Наконец, брандмауэр не может открыто сообщить компьютерам, которые пытаются связаться друг с другом с его помощью, почему соединение не удалось установить. Он должен сделать вид, что дело в отрезанном кабеле. В силу этих причин сетевые пуристы считают брандмауэры недостатком архитектуры интернета. Тем не менее интернет может представлять опасность для компьютера. Брандмауэры помогают решать эту проблему, так что они, скорее всего, никуда не исчезнут.
Даже в случае идеально настроенного брандмауэра остается множество вопросов, связанных с безопасностью. Например, если входящие пакеты пропускаются только со стороны конкретных сетей (например, LAN дочернего предприятия компании), взломщик, находящийся вне зоны действия брандмауэра, может просто фальсифицировать адрес отправителя и тем самым преодолеть барьер. Если же нечестный сотрудник захочет переслать секретные документы, он может их зашифровать или просто сфотографировать и передать в виде JPEG-файлов, и тогда они смогут проникнуть через любые почтовые анализаторы. И мы еще не обсудили тот факт, что хотя 75 % атак происходит извне, атаки в зоне действия брандмауэра (например, недовольными сотрудниками) зачастую гораздо опаснее (см. отчет компании Verizon, 2009).
Еще один недостаток брандмауэров состоит в том, что они обеспечивают единый периметр или единую защиту. Если эта защита ломается — все пропало. По этой причине их используют для многоуровневой защиты. Например, брандмауэр может охранять вход во внутреннюю сеть, а на каждом компьютере также может быть свой брандмауэр. Если вам кажется достаточным наличие одного контрольно-пропускного пункта, видимо, вы давно не летали международными авиалиниями. Сегодня многие сети имеют несколько уровней защиты, вплоть до отдельных брандмауэров для каждого хоста. Это самый простой пример эшелонированной защиты (defense in depth). Следует заметить, что как в аэропорту, так и в компьютерной сети наличие множества независимых механизмов защиты существенно усложняет злоумышленникам задачу взлома всей системы.
8.3.2. Обнаружение и предотвращение вторжений
Помимо брандмауэров и скрубберов, администраторы сетей могут развернуть ряд других средств защиты, включая системы обнаружения и предотвращения вторжений, которые мы сейчас кратко обсудим. Как можно понять из названия, системы обнаружения вторжений (Intrusion Detection System, IDS) служат для обнаружения атак, в идеале еще до того, как атаки успеют причинить какой-либо урон. Например, они могут генерировать предупреждения при выявлении ранних проявлений атаки, таких как сканирование портов, попытки войти в систему путем прямого перебора паролей от SSH (когда атакующий просто перебирает различные популярные пароли) или обнаружение сигнатуры новейшего и мощного эксплойта в TCP-соединении. В то же время иногда атаку удается выявить лишь на позднем ее этапе, когда система уже взломана и необычно себя ведет.
IDS можно классифицировать по тому, где и как они работают. Хостовые системы обнаружения вторжений (Host-based IDS, HIDS) работают непосредственно на конечной точке (ноутбуке или сервере) и отслеживают поведение программного обеспечения или входящий и исходящий трафик веб-сервера только в пределах данного компьютера. Сетевые системы обнаружения вторжений (Network IDS, NIDS), напротив, проверяют сетевой трафик некоторой группы компьютеров. Обе эти разновидности систем имеют свои преимущества и недостатки.
Сетевые IDS привлекательны тем, что защищают большое количество компьютеров (и благодаря этому могут находить корреляции между событиями на разных хостах) и не используют их ресурсы. Таким образом, IDS не влияют на производительность компьютеров в защищаемой ими области сети. С другой стороны, при этом трудно устранять проблемы, касающиеся отдельных компьютеров. Допустим, что в трафике TCP-соединения имеются TCP-сегменты, частично накладывающиеся друг на друга: пакет A содержит байты 1–200, а пакет B — байты 100–300. Очевидно, что в данном случае имеется наложение байтов пользовательских данных. Предположим, что байты в накладывающейся области несколько различаются. Что в таком случае должна сделать IDS?
На самом деле вопрос заключается в следующем: какие байты будет при этом использовать хост-получатель? Если ему нужны байты из пакета A, то IDS должна проверить их на отсутствие вредоносного контента и проигнорировать пакет B. Но что, если этот хост использует байты из пакета B? А если одна часть хостов в сети принимает байты из пакета A, а другая — из пакета B? Затруднения могут возникнуть, даже если все хосты ведут себя одинаково и IDS знает, как они производят повторную сборку данных из TCP-потока. Даже если все хосты обычно принимают байты из пакета A, IDS может обнаружить, что этот пакет все равно некорректен, поскольку до адресата он должен пройти еще два-три транзитных участка, а его значение TTL равно единице (то есть он не сможет достичь пункта назначения). Такие трюки со значением TTL и накладывающимися диапазонами байтов в IP-фрагментах или TCP-сегментах называют методами обхода IDS (IDS evasion).
Еще одной проблемой при использовании сетевых IDS является шифрование. Если сетевые байты уже невозможно дешифровать, то системе IDS очень сложно проверить, являются ли они вредоносными. Это еще один пример того, как одно средство защиты (шифрование) может снизить эффективность другого средства (IDS). В качестве обходного маневра администраторы отдельных систем могут предоставить IDS ключи шифрования для сетевой IDS. Хотя этот подход работает, все же он не идеален, ведь тогда придется дополнительно заботиться об управлении ключами. При этом IDS видит весь сетевой трафик и, как правило, сама содержит множество строк кода. Из-за этого она становится привлекательной мишенью для атаки. Взломав ее, злоумышленники получат доступ ко всему сетевому трафику!