Компьютерные сети. 6-е изд. — страница 37 из 247

Большинство существующих систем связи, особенно коммутируемых телефонных сетей общего пользования (Public Switched Telephone Network, PSTN), было спроектировано много лет назад для совершенно иной цели: передачи человеческого голоса в более-менее узнаваемом виде. По кабелю, соединяющему два компьютера, можно передавать данные со скоростью в 10 Гбит/с и более; таким образом, перед телефонной сетью ставится задача передачи битов на высоких скоростях. Первые технологии цифровых абонентских линий (DSL) позволяли передавать данные со скоростью не более нескольких мегабит в секунду; сегодня более современные DSL достигают 1 Гбит/с. В следующих разделах описывается устройство и функционирование телефонной системы. Дополнительную информацию можно найти в работе Лайно (Laino, 2017).


2.5.1. Структура телефонной системы

После получения Александром Грэхемом Беллом патента на телефон в 1876 году (всего на несколько часов раньше его конкурента Илайши Грея (Elisha Gray)) возник колоссальный спрос на его изобретение. Изначально на рынке продавались только телефоны, причем попарно. Протягивать провод между ними должен был сам абонент. А если владелец телефона хотел поговорить с n владельцами других телефонов, приходилось тянуть отдельные провода во все n домов. Всего через год города были покрыты проводами, беспорядочно опутывающими дома и деревья. Стало очевидно, что модель соединения всех телефонов попарно, приведенная на илл. 2.24 (а), не подходит.

Илл. 2.24. (а) Полносвязная сеть. (б) Централизованная коммутация. (в) Двухуровневая иерархия

Надо отдать Беллу должное: он быстро осознал проблему и создал компанию Bell Telephone. Первая коммутационная станция открылась в Нью-Хэйвене, штат Коннектикут, в 1878 году. От коммутатора тянулись провода в дома и офисы всех абонентов. Чтобы позвонить кому-то, абонент вращал рукоятку телефона, на коммутаторе раздавался звонок, и оператор вручную соединял звонившего с вызываемым абонентом с помощью короткого гибкого кабеля. Модель отдельного коммутатора показана на илл. 2.24 (б).

Вскоре коммутаторы Bell Telephone стали появляться повсюду как грибы после дождя. Люди захотели звонить из одного города в другой, так что Bell Telephone начали соединять коммутаторы между собой. И скоро столкнулись с той же проблемой: при соединении проводами всех коммутаторов попарно сеть быстро становилась очень запутанной. Поэтому были изобретены коммутаторы второго уровня. Через какое-то время потребовалось уже несколько коммутаторов второго уровня, как показано на илл. 2.24 (в). В конце концов иерархия разрослась до пяти уровней.

К 1890 году телефонная система состояла из трех основных составляющих: коммутаторов; проводов, соединяющих абонентов с коммутаторами (теперь уже симметричных изолированных витых пар, а не голых проводов с землей в качестве обратного провода); и наконец, междугородних соединений коммутаторов. Техническая сторона истории телефонной системы кратко описана в работе Хоули (Hawley, 1991).

И хотя с тех пор все три составляющие претерпели значительные изменения, основная модель Bell Telephone через 100 лет осталась по существу такой же. Следующее описание, возможно, несколько упрощено, но позволяет понять, что к чему. Из каждого телефона выходит два провода, непосредственно ведущих в оконечную телефонную станцию (end office), называемую также местной центральной АТС (local central office). Расстояние между станциями обычно составляет от 1 до 10 км, причем в городах меньше, чем в сельской местности. Только в США насчитывается около 22 000 оконечных станций. Линия из двух проводов между телефоном абонента и оконечной станцией называется абонентским шлейфом (local loop)22. Если вытянуть в одну линию все локальные шлейфы в мире, они покрыли бы расстояние до Луны и обратно 1000 раз.

В какой-то момент 80 % капитала AT&T составляла медь в абонентских шлейфах. На тот момент AT&T была фактически крупнейшим добывающим медь предприятием в мире. К счастью, это было не слишком широко известно, иначе какой-нибудь агрессивный инвестор мог бы купить AT&T, закрыть весь телефонный бизнес в США, выкопать все провода и продать их скупщикам цветных металлов ради быстрой наживы.

Когда абонент, подключенный к местной АТС, звонит другому абоненту, подключенному к той же станции, механизм коммутации создает прямое элект­рическое соединение двух абонентских шлейфов, поддерживаемое на протяжении всего звонка.

Если же вызываемый телефон подключен к другой станции, необходима иная процедура. У каждой АТС есть несколько исходящих каналов связи, ведущих к одному или нескольким соседним коммутаторам, называемым междугородними телефонными станциями (toll office) либо транзитными (узловыми) телефонными станциями (tandem office), если они расположены в одном районе. Эти каналы называются соединительными линиями (toll connecting trunk). Число различных видов коммутаторов и их топология в разных странах различаются и зависят от плотности телефонной сети.

Если линии АТС как вызывающего, так и вызываемого абонента ведут к одной междугородней станции (что весьма вероятно, если они расположены по соседству), то соединение можно произвести внутри этой станции. Телефонная сеть, состоящая лишь из телефонов (маленькие точки), оконечных телефонных станций (большие точки) и междугородних телефонных станций (квадраты), показана на илл. 2.24 (в).

Если соединительные линии АТС абонентов не ведут к одной междугородней телефонной станции, необходимо построить путь между двумя междугородними станциями. Они взаимодействуют друг с другом посредством высокоскоростных междугородних соединительных линий (intertoll trunks, interoffice trunks). До распада AT&T в 1984 году в телефонной системе США для поиска такого пути применялась иерархическая маршрутизация с переходом на все более высокие уровни до тех пор, пока не будет найден общий коммутатор. Затем этот механизм сменила более гибкая неиерархическая маршрутизация. На илл. 2.25 показан механизм маршрутизации междугородних соединений.

Илл. 2.25. Типовой маршрут связи для междугородних звонков

Для связи используется множество различных сред передачи. В отличие от современных офисных зданий, куда обычно прокладываются кабели категории 5 или 6, абонентские шлейфы к жилым домам состоят в основном из витых пар категории 3 (хотя встречается и оптоволокно). А для соединения коммутаторов широко используются коаксиальные кабели, микроволны, а главным образом оптоволоконные кабели.

Раньше передача информации через телефонные системы была аналоговой, а сам голосовой сигнал передавался в виде электрического напряжения от источника в пункт назначения. С приходом оптоволоконных технологий, цифровой электроники и компьютеров все соединительные линии и коммутаторы стали цифровыми и единственной аналоговой частью системы остались абонентские шлейфы. Цифровая передача удобнее, поскольку не требует точного воспроизведения аналоговой формы волны, прошедшей через множество усилителей при междугороднем вызове. Достаточно безошибочно отличать 0 от 1. Благодаря этому свойству цифровая передача данных надежнее аналоговой. Кроме того, она дешевле и проще в обслуживании.

Итак, телефонная система состоит из трех основных компонентов:


1. Абонентские шлейфы (аналог витых пар между оконечными телефонными станциями и жилыми домами/офисами).

2. Соединительные линии (оптоволоконные цифровые каналы связи с очень высокой пропускной способностью, связывающие коммутаторы между собой).

3. Коммутаторы (в которых вызовы перенаправляются из одной соединительной линии в другую, электрически или оптически).

Абонентские шлейфы обеспечивают пользователям доступ к системе, а потому играют критически важную роль. К сожалению, в то же время это самое слабое звено в сети. Основная задача междугородних соединительных линий — сбор нескольких звонков и отправка их по одному и тому же оптоволоконному кабелю. Для этого применяется мультиплексирование по длинам волн (WDM). Кроме того, существует два принципиально разных способа коммутации: коммутация каналов и коммутация пакетов, которые мы рассмотрим далее.


2.5.2. Абонентские шлейфы: телефонные модемы, ADSL и оптоволокно

В этом разделе мы обсудим абонентские шлейфы как старого, так и нового образца. Мы расскажем о телефонных модемах, ADSL и технологии «оптоволокно в дом». В некоторых регионах абонентские шлейфы были модернизированы с применением технологии «оптоволокно в дом» (ну или «почти в дом»). Они обеспечивают работу компьютерных сетей с очень приличной пропускной способностью для сервисов передачи данных. К сожалению, прокладывать оптоволоконный кабель в жилые дома дорого. Иногда удается проложить кабель во время других коммунальных работ, требующих раскапывания улиц; абонентские шлейфы в некоторых регионах, особенно в густонаселенной городской местности, — оптоволоконные. Оптоволоконные абонентские шлейфы — редкость, хотя будущее, безусловно, за ними.


Телефонные модемы

Большинству знакомы двухпроводные абонентские шлейфы, ведущие из оконечной телефонной станции в дома пользователей. Эти шлейфы часто называют последней милей, хотя фактическая их длина может составлять не одну, а несколько миль. Были приложены значительные усилия, чтобы выжать все возможное из уже существующих медных абонентских шлейфов. Телефонные модемы служат для обмена цифровой информацией между компьютерами по узкому каналу, предназначенному телефонной компанией для голосовых звонков. Когда-то модемы были распространены, но сегодня их почти везде заменили широкополосные технологии. Одна из таких технологий, ADSL, многократно использует абонентские шлейфы для отправки цифровых данных в АТС, откуда они попадают в интернет. При использовании модемов и ADSL приходится мириться с ограничениями старых абонентских шлейфов. Это относительно узкая полоса пропускания, неизбежное затухание и искажение сигналов, а также чувствительность к электрическим помехам, в частности перекрестным.