4.3.6. Gigabit Ethernet
Как говорится, еще не высохли чернила на только что созданном стандарте Fast Ethernet, как комитет 802 приступил к работе над новой версией. Вскоре она получила название «гигабитный Ethernet» (Gigabit Ethernet). IEEE ратифицировал наиболее популярную форму сети в 1999 году под названием 802.3ab. Ниже мы обсудим некоторые ключевые свойства Gigabit Ethernet. Более подробную информацию можно найти в работе Сперджена и Циммермана (Spurgeon and Zimmerman, 2014).
Главные цели при создании Gigabit Ethernet были, по сути, такими же, что и для Fast Ethernet: увеличить производительность в 10 раз и сохранить обратную совместимость со старыми сетями Ethernet. В частности, Gigabit Ethernet должен был обеспечить дейтаграммную службу без подтверждений, как при одноадресной, так и при широковещательной передаче. При этом необходимо было сохранить неизменными 48-битную схему адресации и формат фрейма, включая нижние и верхние границы его размера. Новый стандарт соответствовал всем этим требованиям.
Как и в случае Fast Ethernet, все сети Gigabit Ethernet строятся по принципу «точка-точка». Простейшая конфигурация, показанная на илл. 4.20 (а), состоит из двух компьютеров, напрямую соединенных друг с другом. Однако чаще всего используется вариант с коммутатором или концентратором, к которому подключается множество компьютеров; также возможна установка дополнительных коммутаторов или концентраторов (илл. 4.20 (б)). В обеих конфигурациях к каждому отдельному кабелю Gigabit Ethernet всегда присоединяются два устройства, ни больше ни меньше.
Илл. 4.20. Сеть Ethernet, состоящая: (а) из двух станций; (б) из множества станций
Как и Fast Ethernet, Gigabit Ethernet может работать в двух режимах: полнодуплексном и полудуплексном. «Нормальным» считается полнодуплексный, при этом трафик может идти одновременно в обоих направлениях. Этот режим используется, когда имеется центральный коммутатор, соединенный с периферийными компьютерами или другими коммутаторами. В такой конфигурации сигналы всех линий буферизируются, поэтому абоненты могут отправлять данные, когда захотят. Отправитель не прослушивает канал, потому что ему не с кем конкурировать. На линии между компьютером и коммутатором компьютер — единственный потенциальный отправитель. Передача произойдет успешно, даже если коммутатор одновременно отправляет фрейм на компьютер (так как линия полнодуплексная). Конкуренции нет, и протокол CSMA/CD не применяется. Поэтому максимальная длина кабеля определяется исключительно мощностью сигнала, а не временем, за которое шумовой всплеск доходит обратно к отправителю. Коммутаторы могут работать на смешанных скоростях; более того, они автоматически выбирают оптимальную скорость. Самонастройка поддерживается так же, как и в Fast Ethernet, но теперь можно выбирать 10, 100 или 1000 Мбит/с.
Полудуплексный режим работы используется тогда, когда компьютеры соединены не с коммутатором, а с концентратором. Концентратор не буферизирует входящие фреймы. Вместо этого он электрически соединяет все линии, симулируя моноканал классического Ethernet. В этом режиме возможны коллизии, поэтому применяется CSMA/CD. Фрейм минимального размера (64 байта) может передаваться в 100 раз быстрее, чем в классическом Ethernet. Поэтому максимальная длина кабеля должна быть соответственно уменьшена в 100 раз. Она составляет 25 м — именно при таком расстоянии между станциями шумовой всплеск гарантированно достигнет отправителя до окончания его передачи. Если бы кабель имел длину 2500 м, то отправитель 64-байтного фрейма в системе со скоростью 1 Гбит/с завершил бы передачу задолго до того, как фрейм прошел бы только десятую часть пути в одну сторону (не говоря уже о том, что сигнал должен еще и вернуться обратно).
Такое строгое ограничение побудило комитет добавить в стандарт два дополнительных свойства, что позволило увеличить максимальную длину кабеля до 200 м. Это должно было устроить большинство организаций. Первое свойство — расширение носителя (carrier extension). Оно сообщает аппаратному обеспечению, что нужно добавить собственное поле заполнения после обычного фрейма, чтобы расширить его до 512 байт. Поскольку это поле добавляется отправителем и изымается получателем, программному обеспечению нет до него никакого дела. Конечно, тратить 512 байт полосы на передачу 46 байт пользовательских данных (именно столько полезной нагрузки содержится в 64-байтном фрейме) несколько расточительно. Эффективность такой передачи составляет всего 9 %.
Второе свойство, позволяющее увеличить допустимую длину сегмента, — пакетная передача фреймов (frame bursting). Отправитель может посылать не единичный фрейм, а пакет, объединяющий в себе сразу несколько фреймов. Если полная длина пакета оказывается менее 512 байт, то производится аппаратное заполнение (как в предыдущем случае). Если же фреймов, готовых к передаче, достаточно, эта схема оказывается весьма эффективной и применяется вместо расширения носителя.
Честно говоря, трудно представить себе организацию, которая сначала потратит немало средств на установку современных компьютеров с платами для гигабитной сети Ethernet, а потом соединит их древними концентраторами, имитирующими работу классического Ethernet со всеми его коллизиями. Сетевые платы и коммутаторы Gigabit Ethernet когда-то были довольно дорогими, но как только спрос на них возрос, цены быстро упали. Однако обратная совместимость — это «священная корова» в компьютерной индустрии, поэтому, несмотря ни на что, комитету необходимо было ее обеспечить. Сегодня большинство компьютеров поставляются с интерфейсом Ethernet, способным работать на скоростях 10, 100 и 1000 Мбит/с (а иногда и более высоких) и совместимым с каждым из этих режимов.
Gigabit Ethernet поддерживает как медные, так и волоконно-оптические кабели, что отражено на илл. 4.21. Работа на скорости около 1 Гбит/с означает необходимость кодирования и отправки бита каждую наносекунду. Первоначально это достигалось за счет коротких экранированных медных кабелей (версия 1000Base-CX) и оптоволокна. Оно допускает две длины волны, и, следовательно, существуют две разные версии: 0,85 мкм (короткие волны, для 1000Base-SX) и 1,3 мкм (длинные, для 1000Base-LX).
Передача с помощью коротких волн возможна с дешевыми светодиодами. Такой вариант применяется с многомодовым волокном для соединения станций внутри здания, так как для 50-мкм волокна допустимая длина составляет не более 500 м. Для передачи сигналов на длинных волнах требуются лазеры. С другой стороны, при использовании одномодового (10 мкм) волокна длина кабеля может достигать 5 км. Это позволяет подключать здания друг к другу (например, в студенческом городке) аналогично связям «точка-точка». Последующие вариации стандарта допускали даже более длинные связи на одномодовом волокне.
Название
Тип
Длина сегмента, м
Преимущества
1000Base-SX
Оптоволокно
550
Многомодовое волокно (50; 62,5 мкм)
1000Base-LX
Оптоволокно
5000
Одномодовое (10 мкм) или многомодовое (50; 62,5 мкм) волокно
1000Base-CX
Экранированный кабель с 2 витыми парами
25
Экранированная витая пара
1000Base-T
Неэкранированный кабель с 4 витыми парами
100
Стандартная витая пара категории 5
Илл. 4.21. Кабели Gigabit Ethernet
Для отправки битов с помощью этих версий Gigabit Ethernet используется система кодирования 8B/10B, заимствованная из другой сетевой технологии, Fibre Channel (оптоволоконный канал), и упомянутая в разделе 2.4.3. В этой системе 8 бит данных кодируются в кодовые слова из 10 бит, которые отправляются по проводу или оптическому волокну, — отсюда и название 8B/10B. Кодовые слова выбираются так, чтобы они могли быть сбалансированы (то есть иметь равное число нулей и единиц) и чтобы переход осуществлялся достаточное число раз для восстановления синхронизации. Отправка битов, закодированных с помощью NRZ, требует на 25 % больше полосы пропускания, чем передача незакодированных битов, — значительное преимущество по сравнению с манчестерским кодом, предполагающим стопроцентное расширение полосы.
Однако все это требовало новых медных или оптоволоконных кабелей, поддерживающих более быструю передачу сигналов. Ни одна из этих технологий не совместима с витой парой категории 5, которая была в огромных количествах проложена для сетей Fast Ethernet. В течение года потребность была закрыта благодаря 1000Base-T, и с тех пор это самая популярная форма Gigabit Ethernet. Очевидно, людям не слишком нравится заново прокладывать кабели в зданиях.
Чтобы сеть Ethernet могла работать по проводам категории 5 со скоростью 1000 Мбит/с, требуется более сложная схема передачи сигналов. Используются все четыре витые пары в кабеле; каждая пересылает данные одновременно в обоих направлениях, применяя цифровую обработку сигналов для их разделения. Для обеспечения скорости 125 мегасимволов/с в каждом проводе используется пять уровней напряжения, которые переносят по 2 бита. Схема преобразования битов в символы не так проста. Она включает скремблинг (для безопасной передачи) и код исправления ошибок, в котором четыре значения внедряются в пять сигнальных уровней.
Скорость 1 Гбит/с — это довольно быстро. Если получатель отвлечется на другую задачу хотя бы на 1 мс и не освободит входной буфер, он может пропустить до 1953 фреймов. А если один компьютер передает данные по гигабитной сети, а другой принимает их по классическому Ethernet, буфер получателя переполнится очень быстро. Исходя из этих рисков было принято решение о внедрении в систему Gigabit Ethernet контроля потока. Для его реализации получатель посылает служебный фрейм, сообщающий, что отправитель должен на некоторое время приостановиться. Служебные фреймы PAUSE — это на самом деле обычные фреймы Ethernet с записью 0х8808 в поле Type. Продолжительность паузы определяется в единицах времени передачи минимального фрейма. Для Gigabit Ethernet такая единица равна 512 нс, а паузы могут длиться до 33,6 мс.