Глава 13
Философия конструирования, или форма, вес и стоимость
Философия есть не что иное, как благоразумие.
Мы уже видели, что расчеты на прочность применяются для анализаповедения конкретных конструкций - либо тех, которые предполагается строить,либо тех, которые уже существуют, но их надежность находится под сомнением,либо тех, которые нас озадачили (успев сломаться). Другими словами, еслимы знаем размеры конструкции и свойства материала, из которого она сделана,то можем по меньшей мере попытаться предсказать, сколь прочной она будети как она будет деформироваться под нагрузкой.
Такие расчеты весьма полезны в конкретных задачах. Но они вряд ли помогут,если мы захотим понять, почему тот или иной предмет имеет именно присущуюему форму и сделан именно так, а не иначе, или если нам понадобится выбратьиз широкого класса возможных конструкций наиболее подходящую для нашегослучая. Например, если мы проектируем самолет или мост, то что лучше сослужит,оболочка ли из сплошных пластин или панелей или же конструкция типа решеткииз стержней или труб, связанных, скажем, тросами? Почему у нас так многомышц и сухожилий и относительно мало костей? Как выбрать из огромного количестваконструкционных материалов именно тот, который нужен? Делать ли конструкциюиз стали или из алюминия, пластмассы или дерева?
Привычные для нас "конструкции" растений, животных и типичных творенийнаших рук приняли свой нынешний вид не сразу. Как правило, форма и материаллюбой живой конструкции, прошедшей длительный путь развития в условияхборьбы за существование, приобрели свой вид в результате оптимизации поотношению к нагрузкам, которым они обычно подвергаются, с одной стороны,и к энергетическим затратам, связанным с обменом веществ, - с другой. Втехнике хотелось бы достичь такой же оптимизации, но это удается нам далеконе всегда. И далеко не все понимают, что этот предмет, который иногда называют"философией конструирования", можно исследовать научными методами. Об этомостается только сожалеть, ибо полученные здесь результаты представляютсяважными как для биологии, так и для инженерного дела.
Хотя философия конструирования - предмет, не очень почитаемый, он уже имеетдовольно длинную историю. Впервые серьезные исследования этой проблемы синженерной точки зрения были предприняты около 1900 г. А.Мичеллом[109].
Хотя биологи и публиковали отдельные работы, связанные с законом двухтретей, сформулированным еще Галилеем (см. гл. 8), первой значительнойработой на эту тему была вышедшая в 1917 г. прекрасная книга Арки Томпсона"Рост и форма", в которой он с общих позиций рассмотрел влияние конструкционныхтребований на форму животных и растений. Несмотря на бесспорные достоинства,эта книга не во всем безупречна с инженерной точки зрения. Получив справедливовысокую оценку, "Рост и форма" не оказала тем не менее реального влиянияна биологическую мысль ни в свое время, ни значительно позже. Кажется,она не произвела должного впечатления и на инженеров. Просто тогда ещене настало время для плодотворного обмена идеями между инженерами и биологами.
В наши дни основной вклад в математическое исследование философииконструирования внес X.Л. Кокс. Будучи большим специалистом по теорииупругости, Кокс обладает и еще одним достоинством - он большой знатокпроизведений Беатрис Поттер[110]. Надеюсь, онпростит меня, если я скажу, что в некоторых отношениях он несколько напоминаетвеликого Томаса Юнга: подобно последнему, демонстрирует не только ярковыраженную одаренность, но и значительную неясность изложения. Боюсь, что невсякий смертный разберется в его идеях без "переводчика", а потому работы Коксаполучили меньшее признание, чем они заслуживают. Многое из того, о чем я будуговорить дальше, прямо или косвенно основано на идеях Кокса. Начнем с егоанализа конструкций, подвергающихся растяжению.
Проектирование конструкций, работающих на растяжение
Любопытно, что к конструированию даже простейшей детали, работающейна одноосное растяжение, нельзя приступать до изобретения какой-либо законцовки,предназначенной для передачи нагрузки. Будь это стальной прут или лиана,канат или струна, напряженное состояние в концевой области гораздо сложнееодноосного растяжения. Здесь широкое поле деятельности для теории, но иэмпирика будет весьма кстати.
Принципы проектирования конструкций, работающих на растяжение, были быкрайне просты, если бы все дело не портили законцовки - детали, передающиенагрузку на обоих концах растягиваемого элемента. Во-первых, вес такойконструкции, рассчитанный на заданную нагрузку, был бы пропорционален еедлине. Скажем, канат, длиной 100 м, рассчитанный на то, чтобы держать грузвесом в 1 т, будет весить в 100 раз больше, чем канат длиной 1 м, выдерживающийтакую же нагрузку в 1 т. Более того, если нагрузка распределена поровну,то безразлично, будет ли она удерживаться одним тросом или стержнем илидвумя, каждый из которых имеет вдвое меньшее поперечное сечение.
Столь простой анализ нарушается необходимостью иметь детали, передающиенагрузку на обоих концах троса или стержня. Даже простая веревка должна иметьпо узлу или петле на каждом конце. Узел или место сращения могут быть довольнотяжелыми и дорогостоящими. При точном расчете вес и стоимость узлов и стыковследует прибавить к весу и стоимости самой растягиваемой детали. Вес истоимость законцовок будут одинаковыми как для длинных, так и для короткихканатов. Поэтому при прочих равных условиях вес и стоимость работающих нарастяжение элементов конструкции на единицу длины с увеличением длины будетуменьшаться. Таким образом, вес не растет пропорционально длине элемента. Можнопоказать также, что общий вес законцовок двух растянутых стержней, работающихпараллельно, меньше, чем общий вес законцовок одного стержня, рассчитанного нату же нагрузку[111]. Следовательно, можносэкономить общий вес, распределив нагрузку между двумя, тремя и болеерастягиваемыми деталями, тросами или канатами.
Кокс подчеркивает, что распределение напряжений в законцовках обычновесьма сложно, в них обязательно появляются зоны концентрации напряжений,в которых при соответствующих условиях распространяются трещины. Поэтомувес и стоимость таких деталей определяются как искусством конструктора,так и трещиностойкостью материала. Чем больше величина работы разрушенияматериала, тем легче и дешевле будут законцовки. Однако, как мы виделив гл. 4, с ростом прочности трещиностойкость материала обычно падает. Дляраспространенных конструкционных материалов, таких, как сталь, работа разрушениякатастрофически падает при увеличении прочности на растяжение.
Тем самым при выборе материала для конструкционного элемента, работающегона растяжение, мы находимся перед лицом двух противоречивых требований.Чтобы уменьшить вес средней части конструкции, нужно использовать материалс большой прочностью на растяжение. Для законцовок же обычно требуетсяболее вязкий материал, весьма вероятно, что он будет иметь невысокую прочностьна растяжение. Как это нередко бывает, здесь следует идти на компромисс.В данном случае выбор материала в основном определяется длиной детали.Для очень длинных деталей, например канатов современных подвесных мостов,следует выбрать высокопрочную сталь, даже если при этом придется миритьсяс дополнительным весом и сложностями, связанными с закреплением концовканата. Все-таки их всего лишь два - на одном и другом берегу, зато междуними может быть целая миля троса. Поэтому экономия веса на средней частиконструкции более чем компенсирует любые потери на ее концах.
Ситуация полностью меняется, если мы будем иметь дело с такими деталями, какцепи с короткими звеньями. В каждом звене вес стыка может быть даже больше весасредней части. Возьмем, например, поддерживающие цепи в старых подвесныхмостах. Обычно они делались из вязкого и пластичного кованого железа снебольшой прочностью на растяжение. Как мы уже говорили в гл. 9, именно по этойвполне убедительной причине растягивающие напряжения в плоских звеньях цепей моста черезМенай[72] составляют всего десятую часть напряжений в тросах современныхподвесных мостов. Примерно то же справедливо и в отношении оболочечныхконструкций, таких, как корпуса судов, резервуары и котлы, изготовленные изотносительно небольших листов железа, или стали. Те же аргументы применимы и ктаким клепаным алюминиевым конструкциям, как современный самолет. Все они могутрассматриваться в большей или меньшей степени как двумерные цепи с достаточнокороткими звеньями. В таких случаях целесообразно использовать менее прочный,но более пластичный материал, иначе вес соединений был бы недопустимо велик(см. гл. 4, рис. 25).
Увеличение числа канатов и тросов в конструкциях судов, бипланов (а такжепалаток) приводит обычно к экономии веса[112]. Но за это приходится платитьповышением лобового сопротивления, общим усложнением конструкции и высокойстоимостью ее эксплуатации. Похожий принцип можно встретить и в животном мире,где природа не скупилась на детали, например мышцы и сухожилия, работающие нарастяжение. Для уменьшения веса законцовок она использовала тот же принцип, чтои моряки елизаветинских времен. Концы многих сухожилий разветвляются внекоторую веерообразную конструкцию, которую Френсис Дрейк назвал бы "птичьейлапой". Каждая веточка сухожилия имеет отдельное крепление к кости. Такминимизируется вес (и, возможно, метаболическая стоимость).
Сравнения веса сжатых и растянутых конструкций
Мы уже говорили в предыдущей главе, что для ряда материалов величиныпрочности на сжатие и растяжение часто сильно различаются, но для многихвесьма распространенных материалов, таких, как сталь, это различие не оченьвелико, так что массы коротких растянутых и сжатых элементов должны бытьболее или менее одинаковыми. На самом деле сжатый короткий стержень можетбыть даже легче растянутого, так как для него иногда не нужны законцовки,совершенно необходимые в случае растяжения.
Однако с увеличением длины такого стержня дает себя знать эйлерова потеряустойчивости. Напомним, что критическая нагрузка, при которой сжатый стерженьдлиной L начинает выпучиваться, изменяется пропорционально1/L2. Это означает, что для стержня с заданным поперечным сечением предельноенапряжение при сжатии с увеличением L убывает очень быстро.Чтобы выдержать заданную нагрузку, длинный стержень должен быть гораздотолще и, следовательно, тяжелее короткого. Как мы установили в предыдущемпараграфе, в случае растяжения все происходит как раз наоборот.
Очень поучительно сравнить, как конструкционный элемент длиной 10 мвыдерживает нагрузку весом 1 т (104 Н) в условиях растяженияи сжатия.
Растяжение. Для стального троса допустимое напряжение примемравным 350 МН/м2 (35 кгс/мм2). Принимая во внимание крепления на его концах,найдем общий вес конструкции равным примерно 3,5 кг.
Сжатие. Попытаться удержать нагрузку в 1 т (104 Н)с помощью одного сплошного стального стержня длиной 10 м было бы простоглупо: чтобы избежать потери устойчивости, его пришлось бы сделать оченьтолстым и, следовательно, очень тяжелым. На практике можно, например, использоватьстальную трубу диаметром около 16 см с толщиной стенок около 5 мм. Такаятруба будет весить около 200 кг. Другими словами, ее вес будет в 50-60раз больше, чем у стального стержня, работающего в тех же условиях на растяжение.Стоимость конструкции увеличится примерно в той же пропорции. Далее, еслимы захотим распределить нагрузку между несколькими деталями, то ситуацияне только не станет лучше, а значительно ухудшится. Если мы попробуем держатьнагрузку в 1 т не с помощью одной колонны, а, скажем, с помощью похожейна стол конструкции на четырех стержнях 10-метровой высоты, то общий ихвес удвоится и достигнет 400 кг. Чем на большее число элементов мы распределимданную нагрузку, тем больше будет вес всей конструкции: он растет как n1/2,где n - число элементов (см. приложение 4).
С другой стороны, если мы будем увеличивать нагрузку при фиксированнойдлине, то ситуация в случае сжатой конструкции будет выглядеть получше.Например, если увеличить нагрузку в сто раз, с 1 т до 100 т, то, если весрастянутой конструкции увеличится соответственно с 3,5 до 350 кг, вес однойколонны высотой в 10 м увеличится только десятикратно, с 200 до 2000 кг.Поэтому в случае сжатия гораздо экономичнее поддерживать большую нагрузку,чем малую (рис. 152). Все эти рассуждения справедливы также и для панелей,пластин и оболочек (см. приложение 4).
Рис. 152. Зависимость относительного веса (и стоимости) детали, котораядолжна передать заданную нагрузку, от ее длины.
Приведенный анализ подтверждает рациональность таких конструкций,как палатки и парусные суда. В них сжимающие нагрузки действуют концентрированнона небольшое количество по возможности коротких мачт или шестов. В то жевремя растягивающие нагрузки, как мы уже говорили, лучше распределить средибольшого количества канатов и тросов. Поэтому шатер, имеющий единственныйшест и множество растяжек, является самым легким "зданием", которое толькоможно построить при заданном объеме. Любая палатка будет легче и дешевлекапитального здания из дерева или камня. Точно так же катер или шлюп сединственной мачтой имеет более легкую и эффективную оснастку, чем шхуна,кеч или любой более сложный корабль с большим количеством мачт. Именнопоэтому были тяжелы и неэффективны А-образные или треугольные мачты древнихегиптян и конструкторов викторианских броненосцев (см. гл. 10).
Конструкция человеческого тела имеет много общего с конструкцией шатраи парусного корабля. Небольшое количество сжатых деталей, то есть костей,расположенных примерно в центре конструкции, окружено множеством мышц,сухожилий и связок, работающих на растяжение, причем эта система гораздосложнее системы парусов и канатов полностью оснащенного корабля. Кстати,с конструкционной точки зрения две ноги лучше, чем четыре, а сороконожкаможет существовать только потому, что ноги у нее весьма коротки.
Масштабные эффекты, или еще раз о законе двух третей
Напомним, что уже столетия назад Галилею пришла мысль о том, что, посколькувес конструкции растет, как куб ее размеров, а поперечное сечение несущихдеталей увеличивается пропорционально квадрату размеров, то напряженияв материале геометрически подобных конструкций должны расти пропорциональноих размерам. Если разрушение конструкции происходит из-за растягивающихнапряжений, прямо или косвенно определяемых ее собственным весом, то этоозначает, что с увеличением размеров относительная толщина и вес несущихдеталей должны расти не пропорционально размерам и весу всей конструкции,а гораздо быстрее. Поэтому размеры таких конструкций не могут превышатьнекоторого предела.
Закон двух третей долгое время был общепринятым как среди биологов,так и среди инженеров. Герберт Спенсер и позднее Арки Томпсон утверждали,что этот закон ограничивает размеры животных, а инженеры в свою очередьприбегали к нему, чтобы показать, почему неразумно строить корабли и самолетызначительно больших размеров, чем уже существующие. Однако, несмотря наэто, размеры кораблей и самолетов продолжали увеличиваться.
В действительности закон двух третей в полной мере применим, по-видимому,лишь к оконным и дверным перемычкам греческих храмов (они делались из непрочноготяжелого камня), к айсбергам и плавучим льдинам (они состоят из непрочноготяжелого льда), а также ко всякого рода предметам типа желе или бланманже.
Мы уже видели, что во многих сложных конструкциях вес сжатых элементов во многораз превышает вес элементов, подвергающихся растяжению. Поскольку сжатыеэлементы обычно выходят из строя вследствие потери устойчивости, с увеличениемнагрузки их эффективность возрастает, иными словами, их эффективность растет сувеличением размеров сооружения. Поэтому, хотя вес силовой конструкции иувеличивается быстрее ее размеров, но происходит это все же значительномедленнее, чем предписывает закон двух третей. На практике этот рост может бытьвполне оправдан тем полезным эффектом, который дает увеличение размеров.Например, для кораблей или рыб, самолетов или птиц сопротивление движениюпримерно пропорционально площади их поверхности, и отношение этой площади квесу будет падать с увеличением размеров. Именно этим руководствовался Брюнельпри проектировании корабля "Грейт Истерн". Хотя его огромный корабль и оказалсянеудачным[113], подход был правильным, именно поэтому мы строимтеперь такие гигантские корабли, как современные супертанкеры. Размеры жебольших животных, как мы видели в гл. 4, скорее связаны с "критической длинойтрещин Гриффитса" в их костях, а не с законом двух третей.
Каркасные конструкции против монокока
Очень часто инженер стоит перед проблемой выбора между решетчатой каркаснойконструкцией, сделанной, как в детском конструкторе, из отдельных стержнейи брусьев (ее называют пространственной фермой), и оболочечной конструкцией,в которой нагрузки воспринимаются более или менее непрерывными панелями(такой тип конструкции называют монококом). Иногда различие между двумяэтими формами конструкций смазывается, это происходит в тех случаях, когдакаркасная система покрывается какой-нибудь обшивкой, которая на самом делевоспринимает лишь незначительную долю нагрузки. Примером того могут служитьобычные обшитые деревом домики, современные каркасные ангары и склады,покрытые гофрированным железом, и, наконец, животные, покрытые чешуей илипанцирем.
Иногда выбор между двумя этими типами конструкций бывает продиктованне только конструкционными соображениями. Так, опоры для линий электропередачделают только решетчатого типа, поскольку они испытывают меньшее давлениеветра и имеют меньшую площадь окраски, а водяные цистерны предпочитаютделать в виде оболочки из более толстых стальных листов, а не в виде решетчатойсиловой конструкции, поддерживающей водонепроницаемую оболочку из болеетонкого материала, хотя такая форма может иметь меньший вес и используетсяприродой в '"конструкции" желудка и мочевого пузыря.
В одних случаях различие в весе и стоимости двух возможных типов конструкцийнезначительно, и поэтому безразлично, какую из них использовать. В других- разница очень велика. Как мы уже видели, палатка или шатер всегда значительнолегче и дешевле, чем любое здание такого же объема, сделанное из бетонаили кирпича. Кузов автобуса "Вейман" (модель 1930 г.) имел деревянный каркас,обтянутый тканью, и был гораздо легче любого из штампованных металлическихкузовов оболочечной конструкции, вошедших в употребление позже. При нынешнихценах на бензин подобный кузов вполне может обрести вторую жизнь.
Существует, однако, мнение, будто оболочечные конструкции типа монококаболее современны и прогрессивны, чем якобы примитивные и устаревшие пространственныекаркасные конструкции. Такого мнения придерживаются даже опытные инженеры,но в действительности для этого нет объективных оснований. В тех случаях,когда нагрузка носит в основном сжимающий характер, пространственные каркасныесистемы всегда легче и обычно дешевле монокока. Однако весовые издержкипри использовании конструкций типа монокока не так уж велики, если большиенагрузки воспринимаются конструкцией относительно малых размеров. Это оправдываетв ряде случаев их применение. Но для больших слабо нагруженных конструкций,таких, как дирижабль с жестким корпусом, каркасная конструкция практическиявляется единственно возможной. Реальный воздухоплавательный аппарат будетне огромным монококовым дирижаблем, сделанным из блестящих листов алюминия,которыми бредят инженеры, а наполненным газом баллоном.
Переход от палочек, проволочек и ткани в конструкциях первых самолетов ксовременным монококам был продиктован не внезапной сменой моды. Это былнеобходимый и совершенно логичный шаг, связанный с резко возросшими скоростямии нагрузками. Как мы уже говорили, в условиях сжимающих и изгибающих нагрузокмонокок всегда окажется тяжелее каркасной конструкции, хотя при увеличениинагрузок этот избыточный вес и уменьшается. С другой стороны, в условияхнагрузок, приводящих к сдвигу и создающих крутящий момент, монокок оказываетсяпредпочтительнее каркасной конструкции[114].
С ростом скоростей самолетов росли и требования к прочности и жесткостина кручение. Наконец наступил момент (это было в 30-е годы), когда из-затребований к весу конструкций пришлось окончательно перейти от каркаснойсистемы к монококу, в первую очередь при конструировании монопланов. Поэтомусовременные самолеты обычно делают в виде сплошной оболочечной конструкциииз листов алюминия, фанеры или стеклопластика. Возврат к пространственнойкаркасной системе, который мы наблюдаем в конструкциях современных планеров,действительно чрезвычайно легких, столь же логичен. Большие крутящие нагрузкивстречаются лишь в созданных человеком конструкциях, таких, как кораблиили самолеты. Мы уже говорили в гл. II, что природе почти всегда удаетсяизбежать кручений, и поэтому монокок или внешний скелет встречаются нечасто, во всяком случае у крупных животных. Большинство из них позвоночные,и они представляют собой весьма сложную и эффективную пространственнуюферму, конструкционно весьма мало отличающуюся от бипланов и парусных кораблей.Очень показательны с этой точки зрения конструкции птиц, летучих мышейи птеродактилей. Они устроены таким образом, что их легкие каркасные конструкциине требуют большой крутильной жесткости, поэтому они не разрушаются в полете.Это полезно иметь в виду авиаконструкторам.
Надувные конструкции
Иногда интересно поразмышлять над некоторыми "если бы" и "но" в историитехники. Если бы Исамбард Кингдом Брюнель возник на "железнодорожном"небосклоне всего несколькими годами раньше, то весьма вероятно, что большинствожелезных дорог в мире имело бы колею шириной в 2150 вместо чаще всегоиспользуемой сейчас колеи в 1435 мм[115]. Такая ширина была введенаего конкурентом Джорджем Стефенсоном как ширина "колеи угольной вагонетки",которая в свою очередь исходила от ширины колеи римских колесниц.Стефенсоновская колея имела некоторое начальное преимущество в возникшемсоревновании - такую возможность предвидел и Брюнель. Но будь сегодняжелезнодорожная колея шире, железнодорожный транспорт, возможно, и втехническом, и в экономическом отношении занимал бы сейчас большее место внашей жизни. Не исключено, что в этом случае картина мира была бы несколькоиной.
С другой стороны, если бы надувные шины появились к 1830 г., можно былобы тогда прямо перейти к безрельсовому транспорту, миновав стадию железныхдорог. И в этом случае современный мир был бы совсем другим. На самом делеизобретение надувной шины опоздало на 15 лет. Она была запатентована в1845 г. двадцатитрехлетним Р.В. Томсоном. Шина Томсона технически былаудивительно удачной, однако к этому времени железные дороги уже вошли вжизнь. Интересы железнодорожных компаний, совпавшие с интересами владельцевгужевого транспорта, привели к абсурдному законодательству, которое черезсистему запретов отодвинуло развитие автомобильного транспорта до рубежапрошлого и нынешнего столетий.
Нельзя было и помыслить, что велосипед может составить какую-либо конкуренциюпоездам или лошадям, поэтому его появление было официально признано и разрешенов викторианские времена. Надувная шина с успехом пережила свое возрождениев 1888 г. для использования в велосипеде. Дж.Б. Данлоп сделал на этомсостояние, так как Томсон к этому времени уже умер и его патент потерялсилу. Скорость грузовика со сплошными шинами была бы ограничена примерно20 км/час, не намного быстрее двигался бы и легковой автомобиль. ИзобретениеТомсона не только сделало практически возможным быстрый и дешевый шоссейныйтранспорт, но и позволило самолетам подниматься с суши и садиться на нее.Без надувных шин мы были бы вынуждены пользоваться, вероятно, какими-тогидропланами.
Шины, смягчающие и выравнивающие ударные нагрузки, которые действуютна колеса экипажа, - это лишь один из видов силовых надувных конструкций.Разного рода силовые надувные конструкции позволяют избежать серьезныхзатрат материала и снизить стоимость в тех случаях, когда необходимо передаватьнебольшие изгибающие и вжимающие нагрузки на значительные расстояния. Втаких конструкциях сжатию подвергаются не твердые панели или колонны, которыелегко выпучиваются, а воздух или вода. Твердые же части конструкции подвергаютсятолько растягивающим напряжениям, что, как мы уже могли убедиться, и легче,и дешевле.
Остроумная идея использования надувных конструкций в технике отнюдьне нова. Примерно за тысячелетие до нашей эры в верховьях Тигра и Евфратаделали лодки и плоты из надувных шкур. Они спускались вниз по течению,нагруженные товарами, на них, как правило, находились также мулы и ослы.По прибытии на место назначения воздух выпускался из шкур, и лодки возвращалисьобратно домой по суше на спинах этих вьючных животных. Сегодня надувныелодки получили широкое распространение, так же как и надувные палатки имебель, в упакованном виде их просто перевозить.
Поддерживаемая воздухом крыша была предложена в 1910 г. крупным инженеромФ. Ланчестером. Она представляла собой надувную оболочку, края которойкрепились к земле. Оболочка поднималась и держалась в воздухе благодаряочень небольшому избыточному давлению, создаваемому простым вентиляторнымкомпрессором. Хотя входить и выходить приходилось через специальный воздушныйшлюз, это не умаляло достоинств конструкции. Крыша Ланчестера позволяетпросто и дешево создать перекрытие над большой площадью, однако в настоящеевремя ее применение ограничивается такими сооружениями, как оранжереи икрытые теннисные корты, применению в строительстве производственных и жилыхзданий препятствуют давно устаревшие нормы.
Конечно, в надувных конструкциях не обязательно использовать тольковоздух. На том же принципе "работает" мешок с песком, так же как и баржитипа "Дракон", которые представляют собой просто большие удлиненные плавающиемешки, наполненные водой или нефтью. Они используются в верховьях Амазонкидля транспортировки нефти, и после опорожнения возвращаются назад по суше(только не на ослах), как и древние надувные лодки на Евфрате. В такихмешках доставляется пресная вода в туристские отели, расположенные на островахГреции.
Техника надувных конструкций, вероятно, заслуживает более интенсивногоразвития, чем это было до сих пор. По-настоящему эксплуатируют принципнадувных конструкций лишь растения и животные, организм которых работаетподобно химическому заводу и содержит много самых разных и сложных жидкостей.Нет ничего более естественного и экономичного, чем спроектировать червякав форме длинного мешка, туго нафаршированного внутренностями. Конструкциитакого типа так хорошо работают и представляются настолько естественными,что можно только удивляться, почему животным понадобилось обзавестись скелетомиз хрупких и тяжелых костей. Не было ли бы куда как удобнее, если бы человекбыл устроен наподобие осьминога, каракатицы или хобота слона?
Существует мнение, как сообщил мне профессор Симкис, что в животноммире на самом деле никто и никогда не замышлял обзаводиться скелетом; вполневозможно, что самые ранние кости были просто свалкой ненужных организмумельчайших частиц металлов. Но коль скоро живой организм хоть однажды произвелвнутри своего тела твердое неорганическое образование, он мог затем попытатьсяиспользовать его и для прикрепления мускулов.
Колеса со спицами
На свадьбе немодной этой
Не будет, увы, кареты, -
Но будешь прекрасна
На первоклассном
Двухместном велосипеде!
В обычном деревянном колесе телеги весь ее вес воспринимается спицами,поочередно работающими на сжатие. В этом смысле телега очень похожана сороконожку с огромным количеством длинных ног. Вместе взятые, они многовесят, но работа их неэффективна. Впервые, кажется, этот факт стал ясенДжорджу Кэйли (1773-1857), замечательному и эксцентричному человеку. Кэйлибыл одним из самых блестящих зачинателей авиации, он задался вопросом,как сделать колеса шасси своего самолета более легкими. Уже в 1820 г. онпонял, что можно сильно сэкономить на весе, если изобрести такое колесо,в котором спицы работают не на сжатие, а на растяжение. Эта мысль привелав конце концов к разработке современного велосипедного колеса, в которомпроволочные спицы постоянно растянуты, в то время как сжимающая нагрузкавоспринимается ободом, который можно сделать весьма тонким и легким, таккак он оказывается весьма устойчивым.
Колесо с проволочными спицами и надувными шинами сделало велосипед чрезвычайноудобным и практичным. Однако экономия веса достигается только в случаебольших и слабо нагруженных колес, таких, как колеса велосипеда. Когдаколесо становится меньше, а нагрузка больше, натянутые спицы обычно почтине дают преимуществ. В современных спортивных автомобилях штампованныестальные колеса лишь чуть тяжелее колес со спицами, которые в данном случаене стоят связанных с ними хлопот и расходов.
О выборе лучшего материала, или что такое "лучший материал"
Можно предположить, что природа знала свое дело, когда выбирала междуразличными возможными вариантами биологических тканей, но простые смертные, апорой и даже великие, имеют очень странные представления о материалах.Согласно Гомеру, лук Аполлона был сделан из серебра[116] - металла, в котором можно запасти лишь ничтожное количествоупругой энергии. В более поздние века поэты говорили, что полы на небесахсделаны из золота или из стекла; оба вещества - чрезвычайно неподходящийстройматериал для полов. Правда, поэты почти всегда безнадежны в отношенииматериалов, но и большинство из нас не многим лучше. В действительности оченьредко кто-либо всерьез задумывается о подобных вещах.
Выкрутасы моды и соображения престижа, кажется, играют здесь главнуюроль. Золото не очень подходит для часов, так же как и сталь для мебелиоффисов. В викторианскую эпоху увлекались чугуном, из него делали дажетакие предметы обихода, как подставки для зонтиков. Говорят, вождь одногоафриканского племени весь свой дворец построил из чугуна. Хотя выбор материалаиногда является следствием эксцентричности, чаще он основан на традицияхи консерватизме. Конечно, в основе традиционного выбора материала нередколежат весьма веские причины, но во многих случаях он обусловлен случайнымиобстоятельствами, а порой обоснованность и случайность так тесно переплетены,что трудно понять, насколько он оправдан. Люди искусства, от Льюиса Кэрроладо Сальватора Дали, открыли, что можно вызвать сильный психологическийшок одной мыслью о том, что самые знакомые предметы могут быть сделаныиз явно неподходящего материала, например резины или хлеба с маслом. Инженерыочень восприимчивы к таким эффектам; их бы сегодня также шокировала идеясделать большой деревянный корабль, как наших предков - идея сделать корабльиз железа.
Очень любопытно проследить, как меняется со временем отношение к темили иным материалам. Возьмем, например, соломенные крыши. Солома была самымдешевым и потому самым непрестижным кровельным материалом, однако в беднейшихсельских районах ею часто приходилось покрывать даже крыши церквей. В течениеXVII в., когда церковные приходы сделались побогаче, по подписке собиралиденьги на замену соломы шифером или черепицей. Иногда денег на всю крышуне хватало, и тогда приходилось оставлять солому в тех местах, где онабыла меньше заметна для прохожих, - черепицей покрывалась только сторона,обращенная к главной дороге. Сегодня престижность обернулась другой стороной- соломенная крыша в английских графствах служит предметом гордости весьмабогатых бизнесменов.
Материалы, топливо и энергия
В будущем XX в., возможно, назовут веком стали и бетона. Но не исключено,что о нем будут говорить и как о веке уродств или расточительства. Однаконе только инженеры одержимы сталью и бетоном (и почти безразличны к последствиямэтой одержимости), ими заразились и политики, и широкая публика.
Болезнь, по-видимому, началась лет двести назад со времен промышленнойреволюции и появления дешевого угля; это привело к дешевому железу и железнымпаровым машинам, превращавшим дешевый уголь в дешевую механическую энергиюи т. д., круг за кругом, раскручивалось колесо производства и потребленияэнергии. В угле и нефти в малом объеме запасено большое количество энергии.Машины очень быстро перерабатывают заметную часть этой энергии, но такжев малом объеме. Затем они выдают эту энергию в концентрированной формев виде электричества или механической работы. На этой концентрации энергииосновывается вся наша современная техника. Материалы этой техники - сталь,алюминий и бетон - сами требуют больших количеств энергии для своего производства(табл. 6).
Таблица 6. Количество энергии, необходимое для производства различныхматериалов[117]
Материал / Энергозатраты для производства 1 т материала, Дж х 109/т /Нефтяной эквивалент, т
Сталь (мягкая) / 60 / 1,5
Титан / 800 / 20
Алюминий / 250 / 6
Стекло / 24 / 0,6
Кирпич / 6 / 0,15
Бетон / 4 / 0,1
Углеволокнистые композиты / 4000 / 100
Дерево (сосна, ель) / 1 / 0,025
Полилиэтилен / 45 / 1,1
Поскольку производство этих материалов весьма энергоемко, их можно эффективноиспользовать только в условиях высокой энерговооруженности экономики. Сооружаятехнические устройства, мы затрачиваем не только денежные средства, нои энергию, а потому необходимо обеспечить возврат того и другого.
Несмотря на высокую стоимость энергии и оскудение ее запасов, потреблениеэнергии скорее увеличивается, чем уменьшается. Такие совершенные машины,как газовые турбины, все более и более лихорадочно производят все большеи больше энергии внутри все меньшего и меньшего объема. Совершенные устройстватребуют совершенных материалов, и такие новые материалы, как высокотемпературныесплавы и пластики, армированные углеволокном, требуют для своего производстваогромного количества энергии.
Весьма вероятно, что такое положение вещей не может продолжаться бесконечно,ибо вся эта система полностью зависит от дешевых и концентрированных источниковэнергии, таких, как нефть и уголь.
Живую природу можно считать совершенно уникальной системой, приспособленнойдля извлечения энергии не из концентрированных, а из "размазанных" источников,причем использует она эту энергию с величайшей экономией. Сейчас предпринимаетсямного попыток собирать энергию для технических целей из таких неконцентрированныхисточников, как солнечный свет, ветер или океан. Многие из них, вероятно,окончатся неудачей, потому что энергетические затраты на постройку соответствующихсистем из стали, бетона и других материалов могут оказаться слишком великии даже не компенсируются при их эксплуатации. Очевидно, необходим совершеннодругой подход ко всей проблеме "эффективности". Природа смотрит на этипроблемы с точки зрения "метаболических затрат", и, быть может, мы должныперенять ее опыт.
Дело не только в том, что для производства одной тонны металла или бетонатребуется много энергии. Сами эти громоздкие, но слабо нагруженные конструкции,обычно необходимые для систем с малой плотностью перерабатываемой энергии,могут оказаться в несколько раз тяжелее, если их делать из стали и бетона,а не из более подходящих требующих специальной разработки материалов.
Мы вскоре увидим, что одним из самых эффективных в конструкционном смыслематериалов может быть дерево. При больших размерах и малых нагрузках конструкцияиз дерева во много раз легче, чем конструкция из бетона или стали. В прошломзатруднения с использованием древесины во многом определялись медленнымростом леса и необходимостью дорогостоящей выдержки древесины.
Возможно, самое важное достижение в области материалов за последнеевремя принадлежит генетикам, которые вывели быстрорастущие породы деревьев,дающих коммерческую древесину. Сейчас разводят разновидности сосны (Pinusradiata), ствол которой при благоприятных условиях дает прирост до12 см в диаметре в год, так что лес готов для рубки на деловую древесинууже через 6 лет после посадки. Появились реальные перспективы превратитьдерево в техническую культуру с коротким периодом созревания. Важно, чтопочти вся энергия, необходимая для выращивания древесины, поступает бесплатно,от Солнца. Кроме того, деревянную конструкцию можно сжечь за ненадобностью,получив большую часть энергии, накопленной деревом во время роста, чего,конечно, нельзя сказать ни о стали, ни о бетоне.
Древесина обычно требовала длительной и дорогостоящей выдержки в специальныхсушилках, которые потребляют значительное количество энергии. Сегодня оказалосьвозможным сократить срок выдержки сортовой мягкой древесины до 24 ч принизкой стоимости процесса сушки. Это имеет очень важное значение не толькодля строительного дела, но и в связи с мировым энергетическим кризисом.
Анализ весовой эффективности различных материалов в различных конструкцияхприведен в приложении 4. Проектирование большинства технически совершенныхконструкций, таких, как, например, самолет, во многом определяется величинойE / ρ,которая называется удельным модулем Юнга и определяет, так сказать, весовую"стоимость" деформаций конструкции. Оказывается, однако, что для большинстваобычных конструкционных материалов - молибдена, стали, титана, магния,алюминия и дерева - величина E / ρприблизительно одинакова. Именно поэтому в течение последних 15-20 летправительства разных стран затратили столь большие суммы на разработкуновых материалов, основой которых служат такие экзотические волокна, какнити бора и карбида кремния, углеволокна.
Материалы этого типа могут быть более или менее эффективными в авиакосмическойпромышленности, но одно можно сказать с уверенностью - они не только дороги,но и требуют больших затрат энергии для своего производства. По этой причинеони, вероятно, будут применяться только в специальных целях и, по моемумнению, не найдут широкого применения в обозримом будущем.
Требование высокой жесткости конструкции может очень ограничивать нашивозможности. Однако, как мы уже видели, стоимость сжатой конструкции - весовая,а часто и денежная - во многих случаях тоже очень высока. Весоваястоимость[118] сжатой колонны определяется не отношением E / ρ, авеличиной (E)1/2 / ρ. Весовая стоимость панели зависит от(E)1/3 / ρ (приложение 4). Эти параметры приведены в табл. 7.
Таблица 7. Критерии эффективности некоторых материалов в различных условиях
Материал / Модуль ЮнгаЕ / Плотностьρ / E/ρ /(E )1/2/ρ / (E)1/3/ρ
Сталь / 210000 / 7,8 / 25000 / 190 / 7,5
Титан / 120000 / 4,5 / 25000 / 240 / 11
Алюминий / 73000 / 2,8 / 25000 / 310 / 15
Магний / 42000 / 1,7 / 24000 / 380 / 20,5
Стекло / 73000 / 2,4 / 25000 / 360 / 17,5
Кирпич / 21000 / 3,0 / 7000 / 150 / 9
Бетон / 15000 / 2,5 / 6000 / 160 / 10
Углеволокнистые композиты / 200000 / 2,0 / 100000 / 700 / 29
Дерево (сосна, ель) / 14000 / 0,5 / 25000 / 500 / 48
Можно заметить, что малая плотность материала дает ему большие преимущества,и сталь в этом смысле хуже кирпича и бетона. Кроме того, во многих легкихизделиях, таких, как дирижабли или протезы конечностей, дерево превосходитдаже армированный углеволокном пластик, не говоря уже о том, что оно значительнодешевле.
Таблица 8. Конструктивная эффективность различных материалов, выраженная взатратах энергии, необходимых для их производства[119]
Материал / Энергия, необходимая для обеспечения заданной жесткостиконструкции в целом / Энергия, необходимая для изготовления сжатой панелизаданной критической нагрузкой
Сталь / 1 / 1
Титан / 13 / 9
Алюминий / 4 / 2
Кирпич / 0,4 / 0,1
Бетон / 0,3 / 0,05
Дерево / 0,02 / 0,002
Углеволокнистые композиты / 17 / 17
В табл. 8 приведены характеристики конструктивной эффективности материаловв терминах энергетических затрат. Видно, что обычные материалы - дерево,кирпич и бетон - имеют здесь подавляющее преимущество, и таблица заставляетзадуматься, действительно ли оправданна погоня за материалами, в основекоторых лежат экзотические волокна. Во многих случаях рентабельнее использоватьне углеволокна, а пустоты. Природа поняла это очень давно, когда изобреладерево; это понимали и римляне, которые облегчали кладку пустыми виннымикувшинами. Пустоты несравненно дешевле как в стоимостном, так и в энергетическомотношении, чем любые мыслимые высокомодульные материалы. Возможно, лучшетратить больше времени и средств на разработку пористых и ячеистых материалов,чем на волокна бора или углерода.