Краткий курс пиротехники — страница 5 из 34

Следовательно, из 1 кг пороха выделится:

л газов;

здесь 1282 – сумма молекулярных весов компонентов пороха в соответствующих количествах.

Но в результате реакции, кроме газообразных продуктов, образовались и твердые продукты K2CO3, K2SO4 и K2S с количеством молекул в каждом по уравнению (1). Следовательно, вес K2CO3 будет равен его молекулярному весу, а веса K2SO4 и K2S будут равны их молекулярным весам, умноженным на число граммолекул, т.е. на 2. Итак,


вес K2CO3 = 138 г;

вес 2 K2SO4 = 2 * 174 = 348 г;

вес 2 K2S = 110 г.


Следовательно, вес всех твердых веществ 596 г.

Чтобы вычислить количество твердых веществ, получаемое на 1 кг пороха, делим полученный вес на 1282.

Получим:

кг твердых продуктов.


§ 9. ТЕПЛОВОЙ ЭФФЕКТ ГОРЕНИЯ ПИРОТЕХНИЧЕСКИХ СОСТАВОВ


Химические реакции можно разделить на реакции, которые протекают с выделением тепла, и на реакции, которые протекают с поглощением его. Реакции первого типа называются э к з о т е р м и ч е с к и м и , а второго типа – э н д о т е р м и ч е с к и м и .

Горение пиротехнических составов является экзотермической реакцией.

Образование веществ также происходит в результате либо экзо- либо эндотермических реакции. Выделение при реакции тепла обычно обозначают + Q и поглощение тепла – Q.


      Уравнение экзотермической реакции разложения хлората калия можно представить в следующем виде :

KCIO3 KCI + 3 O + Q,

где Q =11,9 кал.

При соединении некоторых элементов в сложные химические вещества также происходит выделение или поглощение тепла. Для каждого соединения теплота образования ровна теплоте его разложения, но знаки у этих теплот взаимно противоположны. Следовательно, если при образовании воды в жидком виде из атомов водорода и кислорода выделяется Q кал тепла, то для разложения воды на водород и кислород надо затратить тоже Q кал. Сказанное можно условно выразить следующими реакциями:

Реакция эндотермическая, идущая с поглощением теплоты (закон Лавуазье и Лапласа)

Н2О 2 Н + О – 68,4 кал.

В некоторых случаях одно вещество можно получить различными путями. Изменяя условия, в которых протекает реакция, можно в один прием получать конечные ее продукты, либо, останавливаясь на промежуточных продуктах, дойти до тех же конечных. При этом теплота образования (или разложения) химического соединения будет одной и той же, независимо от того, произошло ли последовательных реакции (закон Гесса). При образовании 1 граммолекулы угольного ангидрида из 1 атома углерода и 2 атомов кислорода выделяется 94,5 кал, т.е.

2О + С СО2 + 94,5 кал.

При последовательном образовании угольного ангидрида, сначала получая окись углерода из 1 атома углерода и 1 атома кислорода, а затем присоединяя 1 атом кислорода к 1 молекуле окиси углерода, получим сумму теплот образования, также равную + 94,5 кал.

Сказанное выражается уравнениями:

2О + С СО2 + 94,5 кал. (1)

О + С СО + 26,2 кал. (2)

СО + О СО2 + 68,3 кал. (3)

Общая сумма теплот образования СО2 во втором случае 26,2 + 68,3 = 94,5 кал.


Теплота образования одного вещества изменяется в зависимости от того, в каком агрегатном состоянии оно получается.

На основании разобранных выше законов термохимии (учение о теплоте, сопровождающей химические реакции) можно теоретически определить количество тепла, выделившегося при горении или при разложении веществ.

Теплота образования очень многих различных соединений определена и указана в специальных термохимических таблицах.

Теплота горения (или теплота разложения) может быть определена по уравнению:

Qгор = Q2 – Q1,

Где Qгор - количество калорий тепла, выделившегося в результате реакции горения;

Q2 – сумма теплот образования конечных продуктов реакции;

Q1 – сумма теплот образования начальных продуктов реакции.

Теплоту реакции можно определить теоретически или опытным путем.

Разберем примеры теоретического определения теплоты реакции.

О п р е д е л и т ь т е п л о т у р е а к ц и и в з а и м о д е й с т в и я а з о т н о к и с л о г о б а р и я с а л ю м и н и е м.

Уравнение реакции:

3Ba(NO3)2 + 10 AI 3 BaO + 5 AI2O3 +3 N2 + Qгор.

Сумма теплот образования начальных продуктов равна теплоте образования Ba(NO3)2, умноженной на число взятых в реакцию его молекул: алюминий – элемент и теплоты образования не имеет. Теплота образования Ba(NO3)2 равна 238,2 кал.

Следовательно,

Q1 = 238,2 * 3 = 714,6 кал.

Сумма теплот образования конечных продуктов реакции представляет собой сумму образования 3 мол ВаО и 5 мол AI2O3 равна 389,4 кал.

Следовательно,

Q2 = 3 * 133,1 + 5 * 389,4 = 2346,3 кал;

откуда

Qгор = Q2 – Q1 = 2346,3 – 714,6 = 1631,7 кал.

Уравнение реакции можно теперь написать более полно:

3Ba(NO3)2 + 10 AI 3 BaO + 5 AI2O3 +3 N2 + 1631,7 кал.

Для определения количества тепла, выделяющегося из 1 кг смеси начальных компонентов разделим полученное количество теплоты на сумму их молекулярных весов и умножим на 1000:


кал/кг.

Теплоту разложения окислителя также можно определить теоретически.

У р а в н е н и е р а з л о ж е н и я н и т р а т а к а л и я:

2 KNO3 K2O + N2 + 2,5 O2.


Теплота образования 1 мол KNO3 = 119,5 кал; теплота образования 1 мол K2O = 86,8 кал. Азот и кислород как элементы не имеют теплот образования.

Следовательно, теплота разложения KNO3

Q = 86,8 – 2 * 119,5 = - 152,2 кал.

При этом считаем, что KNO3 – начальный продукт реакции, а K2O, N2 и O2 – конечные продукты, которые могут быть получены из KNO3.

Теплоту горения пиротехнического состава можно подсчитать правильно лишь в тех случаях, когда реакция проходит точно по уравнению и не происходит образования других продуктов, не участвует в реакции кислород воздуха и т.п. Практически, однако, большей частью реакция проходит с некоторыми отклонениями от теории. Поэтому кроме теоретического подсчета обычно необходимо определять теплоту реакции опытным путем. Она определяется в специальном приборе – калориметрической бомбе (рис. 5)


Это прочный стальной цилиндрический сосуд, герметически закрывающийся стальной крышкой. В крышке имеется кран для выпуска газов. Для навески испытуемого вещества внутри бомбы помещается платиновая чашечка С, удерживаемая платиновым стержнем S1, ввинченным в крышку бомбы. По тонкой платиновой проволочке S2 пропускают электрический ток для воспламенения состава. Бомба помещается в водяной калориметр (рис. 5а). Вода в калориметре и в рубашке перемешивается мешалками М2 и М1. температуру воды измеряют термометрами Т1 и Т 2. при сгорании состава внутри бомбы выделяется некоторое количество тепла, повышающее температуру воды в калориметре. Перед опытами определяется так называемый водяной эквивалент калориметрической системы, т.е. количество воды, которое при нагревании на 1° требует столько


тепла, сколько его требует сумма всех деталей калориметра. Водяной эквивалент определяется сжиганием в бомбе вещества с известной теплотой горения. Зная водяной эквивалент, сжигают испытуемый состав в бомбе и по изменению температуры воды в калориметре рассчитывают количество тепла, выделившегося при сгорании единицы веса состава. Если это количество тепла обозначить Q, то его можно определить по формуле:

,

где t2 - температура воды в калориметре после сжигания состава;

t1 – температура воды в калориметре до сжигания состава;

Р – вес воды в калориметре;

W - водяной эквивалент;

m – вес сжигаемого состава.

Зная количество теплоты, выделяющееся при сгорании 1 г состава, можно приближенно вычислить температуру реакции. Точных методов практического определения температуры реакции пиротехнических составов еще до сих пор не найдено; на практике температуру реакции можно приближенно определить специальными пирометрами.


§ 10. СТОЙКОСТИ ПИРОТЕХНИЧЕСКИХ СОСТАВОВ


Способность составов не изменять с течением времени своих физико-химических свойств называется с т о й к о с т ь ю.

Стойкость пиротехнических составов имеет очень важное значение. Если компоненты состава способны самопроизвольно реагировать между собой, то при длительном его хранении химическая природа компонентов и действие состава изменится. Если при этом взаимодействии будет выделяться тепло, то при хранении состав может самовоспламениться.

Иногда стойкость составов нарушается действием различных примесей, сопровождающих основные компоненты, в частности воды. Вода может вступать в реакцию с металлами – магнием или алюминием, которые являются компонентами многих составов. При этих реакциях выделяется тепло, которое может при длительном пребывании состава во влажной атмосфере вызывать его самовоспламенение. При наличии в числе компонентов гигроскопических веществ (т.е. веществ, способных притягивать влагу из окружающей среды) состав легко увлажняется и может оказаться нестойким.