Кто — кого? — страница 9 из 52

Луиджи Гальвани ошибался (не он первый, не он последний!). Животное электричество существует, но, чтобы его обнаружить, надо иметь дело не с мертвым, а с живым организмом.

Что же в действительности произошло с лягушечьей лапкой? Эту задачу начал разгадывать итальянский физик Алессандро Вольта. Он не верил в таинственную «жизненную энергию» мертвой лягушки и в знаменитых опытах Гальвани отвел ее лапке довольно скромную роль. Он понял, что причина возникновения электрического тока связана с взаимодействием различных металлов скальпеля и тарелки, и показал, что, поместив два различных металла в жидкость, можно получить источник электрической энергии. Лягушечья лапка играла роль такой жидкости, а мышцы на этой лапке сокращались под действием не животного электричества, а внешнего электрического тока. Но эта истина была понята не так быстро и просто, как мы описали.

Много лет длился спор двух выдающихся ученых. Гальвани до самой смерти отстаивал свою точку зрения на животное электричество, а Вольта в развитие своего открытия изобрел в 1800 году «вольтов столб», первую в мире электрическую батарею — источник электрического тока. Скромный, как большинство выдающихся ученых, он назвал свое изобретение в честь Гальвани — гальваническим элементом, а электрический ток, вырабатываемый этим элементом, — гальваническим током.

Прошло свыше сорока лет со времени опытов Гальвани. В 1831 году Майкл Фарадей, английский физик, уже свыше десяти лет работавший в области изучения электрических явлений, открыл явление электромагнитной индукции. Оказалось, что если двигать друг относительно друга магнит и замкнутый электрический проводник, то в последнем возникает — индуктируется — электрический ток. Чтобы двигать магнит или проводник, нужно затратить механическую энергию. Она преобразуется в электрическую, текущую по проводнику.

Сделав это открытие, Фарадей, как пишут историки, в течение одиннадцати дней построил первый механический генератор электрического тока — динамо-машину.

Совсем немного времени понадобилось инженерам и ученым, чтобы понять, что с помощью машины можно выполнять также и обратное преобразование энергии, то есть превращать электрическую энергию в механическую. Несколько лет спустя русский физик и электротехник Борис Якоби изобрел электродвигатель с вращающимся ротором — прообраз всех современных электрогенераторов и электродвигателей, вырабатывающих и потребляющих непрерывный поток электроэнергии.

Еще не один десяток лет продолжалось усовершенствование электрических машин. Поначалу казалось, что они вообще не найдут себе применения. Но вот в 1879 году замечательный американский изобретатель Томас Эдисон создал первую практически пригодную электрическую лампочку, а спустя еще три года пустил в эксплуатацию первую в мире электростанцию общественного пользования. Для этой электростанции он сконструировал самые мощные по тем временам электрогенераторы.

Энергия потекла по проводам в каком угодно направлении, ее можно было передавать на большие расстояния. Для этого не надо было длинных и тяжелых металлических валов, не надо было громоздких паропроводов. По проволоке «в мгновение ока» ее можно было подвести к любой машине. Бесшумный, равномерно вращающийся электродвигатель превращал электричество в механическую энергию, нужную, чтобы привести машину в движение. В разных местах машины стало возможным устанавливать 2, 3, 10, 20 двигателей, располагая их как угодно; тонкий, гибкий провод, извиваясь, подводит к ним энергию по самому замысловатому пути.

Когда были оценены эти чудесные свойства электроэнергии и электродвигателя, перестало казаться смешным, что сначала — на электростанции — нужно механическую энергию превратить в электрическую, а затем электрическую энергию опять превращать в механическую. В борьбе за энергию был сделан следующий гигантский шаг.

В 1900 году электрическая энергия составляла всего лишь несколько процентов всей энергии, потреблявшейся промышленными предприятиями. А теперь тысячи и десятки тысяч типов и конструкций электрических машин мощностью от тысячных и сотых долей ватта до десятков и сотен тысяч киловатт вырабатывают электроэнергию и приводят в движение бесчисленное множество машин на заводах и фабриках всего мира.

Проводя свои опыты, Фарадей совершенно не думал, к чему они в конце концов приведут. По его собственным словам, он собирался «превратить магнетизм в электричество». Эту задачу, над которой ломали голову его предшественники, ему блестяще удалось решить, а попутно заметить, что и движение тоже можно превратить в электричество.

Маленький обрывок проволоки, который он двигал относительно полюсов слабенького магнита, превратился в огромный ротор со сложнейшими обмотками, вращающийся в пространстве между полюсами гигантских магнитов. И непрерывным потоком электрическая энергия идет на фабрики и заводы, улицы и в дома.

Электродвигатель очень быстро вытеснил паровую машину с фабрик и заводов, но не смог вытеснить двигатель внутреннего сгорания с транспортных машин — самолетов и автомобилей. Самолет или автомобиль не могут тянуть за собой электрический провод, а беспроволочная передача больших энергий — проблема пока еще не сегодняшнего дня.

Мощность двигателя внутреннего сгорания, который братья Райт поставили в 1903 году на свой самолет, составляла всего 8 лошадиных сил. Спустя тридцать лет самолеты летали в 10 раз быстрее, а мощность авиационных двигателей возросла в 100 раз.

Еще через двадцать лет они летали в 20 раз быстрее, чем самолет Райтов, и им была нужна в 1000 раз большая мощность. Чтобы получить такую мощность, на самолетах устанавливали 2, 3, 4 двигателя внутреннего сгорания. Каждый из них вращал воздушный винт-пропеллер. Лопасти ввинчиваются в воздух, как ввинчивается гребной винт в воду, как ввинчивается штопор в пробку. Ввинчиваясь в воздух, пропеллер тянет за собой самолет. Скорость его стала переваливать за 1000 километров в час. Но и этого было мало; люди мечтали о полетах со скоростями намного большими. Ставший обычным, поршневой двигатель для этого не годился так же, как не годился воздушный винт.


Мы собираемся на Луну

Возьмите воздушный шарик, надуйте его и, не полностью завязав отверстие, отпустите. Упругая резиновая оболочка, сжимаясь, будет выталкивать воздух из отверстия, а он будет толкать шарик. В результате струя воздуха и опадающий шарик будут двигаться в противоположных направлениях. Этот опыт дает представление о принципе реактивного движения и о способе действия реактивного двигателя, который пришел на смену поршневому двигателю, когда самолеты начали летать на высоте 10, 15, 20 километров со скоростью большей, чем 1200–1500 километров в час, уже превышающей скорость звука.

В реактивном двигателе химическая энергия топлива превращается в кинетическую энергию раскаленного потока газов. Этот поток непрерывно выталкивается из двигателя с гигантской скоростью и сам при этом толкает двигатель, а с ним и самолет в противоположную сторону.

Раскаленные газы образуются в результате сгорания топлива. Чтобы сжечь его, нужно гигантское количество воздуха. Поэтому реактивный двигатель внешне немного напоминает отрезок трубы. Воздух входит через переднее отверстие, сжимается специальным компрессором и непрерывным потоком поступает в камеру сгорания. Раскаленный газ под большим давлением выталкивается через выходное отверстие двигателя, создавая реактивную силу, толкающую самолет. В выходном потоке газов устанавливают газовую турбину. Газ, обдувая ее лопасти, заставляет турбину вращаться, отдавая ей часть своей мощности. Эта мощность используется для вращения компрессора, сжимающего воздух.

Реактивный двигатель буквально в несколько лет вытеснил все поршневые двигатели сначала из скоростной авиации, там, где его преимущества были сразу очевидны, а теперь уже вторгся и в пассажирскую авиацию. Почему? Да потому же, почему паровая турбина вытеснила паровую машину!

В двигателях внутреннего сгорания, так же как в паровых двигателях, способ непрерывного преобразования энергии оказался намного целесообразнее, чем преобразование ее отдельными тактами.

Предельно простыми и обтекаемыми кажутся формы внутренних полостей реактивного двигателя. Но это только кажущаяся простота. Она достигнута в результате сложнейших исследований и бесчисленных опытов. И конечная цель их сводится к тому, чтобы в предельно малом объеме получить максимально возможный поток механической энергии, а затем наилучшим образом его использовать.

Поток газов из сопла реактивного двигателя вырывается со скоростью, превышающей 3–4 тысячи километров в час. Благодаря этому реактивный двигатель развивает мощность до 100 тысяч лошадиных сил. И уже стали обычными самолеты, летающие со скоростью 1500 и 2 тысячи километров в час и забирающиеся при этом на высоту 15–20 километров. Но оказалось, что и это не предел! Скорее наоборот. Скорость 2–3 тысячи километров в час и высота 20–25 километров — это только подготовительный этап наступившей в наши дни эры — эры космических полетов.

4 октября 1957 года произошло одно из замечательных чудес XX века. Машина, созданная человеком, вырвалась в космос. Для этого ее надо было снабдить двигателем, который мог сообщить ей гигантскую скорость — 30 тысяч километров в час, нужную, чтобы преодолеть силу земного притяжения.

Сообщение о том, что в Советском Союзе запущен первый в мире искусственный спутник Земли, взволновало весь мир. А действительная история этого «чуда» началась давно, еще тогда, когда люди только мечтали о создании летательных аппаратов тяжелее воздуха. И связана она с именем русского ученого и изобретателя Константина Циолковского.

Хорошо известна истина, что человек — продукт своего времени, что его знания и опыт определяются средним уровнем знаний и опыта, накопленных его современниками. И само собой разумеется, что новое изобретение или открытие никогда не возникает на совершенно пустом месте. При раскопках стоянок древнего человека никто не рассчитывает найти остатки радиоприемника; в трудах ученых средневековья не ищут формулировок законов, управляющих внутриядерными процессами; наши современники пока еще не знают, как добраться до дальних галактик, что такое талант и почему все же яблоко падает на землю.