Квадратура круга — страница 2 из 2

Доказательство неразрешимости какой-либо задачи рассматривается в математике как своего рода решение проблемы, потому что такое утверждение дает вполне исчерпывающий ответ на поставленный вопрос. В этом смысле доказательство Линдемана можно считать решением задачи о квадратуре круга, решением, полагающим конец двухтысячелетней работе над этой проблемой. Продолжают искать другого решения задачи только малосведущие любители. «Таких искателей — писал еще в 18-м столетии математик Ламберт — всегда будет достаточно, и если судить о будущих по их предшественникам, то это будут по большей части люди, мало смыслящие в геометрии и лишенные возможности правильно оценивать свои силы. Там, где им не хватает знания и понимания, где они не могут ничего сделать c помощью правильных последовательных выводов, там жажда славы и денег создает софизмы, которые чаще всего не отличаются ни особой тонкостью, ни особой замысловатостью».

Квадратура круга и потребности практики


Остается рассмотреть еще вопрос: нужно ли точное решение квадратуры круга для фактических расчетов? Оказывается, надобности в точном решении этой задачи никогда практически не возникает. Достаточно располагать таким решением, которое давало бы приближенный результат с желаемой степенью точности; а этого можно достичь, пользуясь даже частью известных уже цифр в выражении π.

Какую точность можно получить этим путем, видно из слов знаменитого французского астронома прошлого века Франсуа Араго. В своей «Общепонятной астрономии» (1849) он писал:

«Посмотрим, с какою точностью возможно, пользуясь цифрами π, вычислить длину окружности, радиус которой равен среднему расстоянию Земли от Солнца (150 000 000 км).

«Если для π взять 18 цифр, то ошибка на одну единицу в последней цифре вовлечет за собой в длине вычисляемой окружности погрешность в 0,0003 миллиметра; это гораздо меньше толщины волоса.[2]

«Мы взяли 18 цифр π. Легко представить себе, какую невообразимо малую погрешность сделали бы, при огромности вычисляемой окружности, если бы воспользовались для π всеми известными его цифрами.

«Из сказанного ясно, как заблуждаются те, которые думают, будто науки изменили бы свой вид, и их применения много выиграли бы от нахождения точного π, если бы оно существовало».

Итак, даже для астрономии, — науки, прибегающей к наиболее точным вычислениям, — не требуется вполне точного решения квадратуры круга.

Десять задач


1. В старину при определении площади круглого участка землемеры часто поступали так: считали круг равновеликим квадрату, периметр которого равен длине окружности измеряемого участка. Какую относительную ошибку (в процентах) они при этом делали, если принять π=3,14? (Этот способ восходит к временам древнего Египта; он указан, наряду с другими, в папирусе Ринда. В средние века он был широко распространен также в Европе).


2. В древней египетской рукописи (в «папирусе Ринда») находим следующее правило для определения площади круга: она равна площади квадрата, сторона которого составляет диаметра круга. Определите относительную ошибку такого расчета в %%, принимая π=3,14.


3. У нас встарину употреблялся сходный с древнеегипетским (см. предыдущую задачу) прием вычисления площади круга, рекомендуемый старинными русскими руководствами по землемерному делу площадь круга приравнивалась площади квадрата со сторонами равными диаметра. Какой способ точнее — этот или древнеегипетский?


4. Валлис нашел (1656 г.) для вычисления π следующий ряд

и т. д.

Лейбниц вывел (1674) такое равенство:

Почему этими равенствами нельзя воспользоваться для точной квадратуры круга?


5. Индусский математик Брамагупта (VII век) предложил для π следующее приближенное выражение:

Как помощью этого выражения приближенно решить задачу о квадратуре круга?


6. Проверьте следующее приближенное равенство:

Как воспользоваться этим соотношением для приближенной квадратуры круга?


7. Проверьте приближенное равенство

Как воспользоваться им для приближенной квадратуры круга?


8. Проверьте следующее соотношение: периметр прямоугольного треугольника с катетами в и диаметра круга, приближенно равен длине окружности этого круга.

Как помощью этого соотношения приближенно решить задачу о квадратуре круга?


9. Голландский инженер Петр Меций нашел (в 1585 г.) для π легко запоминаемое выражение . Представив его в виде десятичной дроби, установите, сколько в ней верных цифр.


10. Придумайте самостоятельно какое-нибудь правило, практически удобное для быстрого приближенного вычисления площади круга.

Ответы и указания


1. Если радиус круга R, то площадь его πR2, а длина окружности 2πR, Квадрат, площадь которого старинное правило принимает равной площади круга, имеет сторону длиною . Площадь такого квадрата равна

Отношение

показывает, что старинное правило дает преуменьшение почти на 22 %.


2. Из отношения

легко установить, что изложенное в задаче правило дает преувеличение примерно на 0,6 %.


3. Правило дает преуменьшение примерно на 2½%.


4. Оба выражения не решают задачи о квадратуре круга, потому что они не могут быть найдены помощью конечного числа математических операций.


5. Построив (рис. 6) прямоугольный треугольник с катетами в 1 и 3 единицы длины, получаем гипотенузу длиною в , т. е. тех же единиц. Этот отрезок приближенно выражает длину окружности, диаметр которой равен взятой единице длины. Зная это, можно построить прямоугольник, приближенно равновеликий кругу; таким прямоугольником будет, например, прямоугольник со сторонами в 1 и единиц длины.

Построенный прямоугольник легко превратить в равновеликий квадрат. (См. рис. 3 и относящийся к нему текст).


6. Сумма . Зная, что при радиусе, равном единице длины, есть сторона вписанного квадрата (рис. 4), a — сторона вписанного равностороннего треугольника (рис. 5), легко построить отрезок, приближенно равный длине полуокружности. Дальнейший ход построения читатель найдет сам, руководствуясь указаниями, данными выше.


7. Сумма . Для построения отрезка в единиц длины, надо уметь построить отрезок равный единиц длины. Построение может быть выполнено, как нахождение средне-пропорционального между отрезками в 1 и 1,8 ед. длины (рис. 7). Далее — см. решения предыдущих задач.


8. Так как выражение

равно , то задача является видоизменением предыдущей.


9. Семь верных цифр.


10. Подобных правил можно предложить много. Вот одно из возможных: площадь круга приближенно равна ¾ площади описанного квадрата плюс половина десятой доли этой величины. Легко видеть, что здесь π принимается равным 3,15 — приближение достаточное для многих практических целей.

Что читать


Исторические сведения, относящиеся к задаче о квадратуре круга, изложены в книгах:

Цейтен, Г. — История математики в древности и в средние века. ГТТИ. 1932. 230 стр.

Кэджори, Ф. — История элементарной математики. «Mathesis». 1917. 478 стр.

Чвалина, А. — Архимед. ГТТИ. 1934. 40 стр.


Полезные сведения дают брошюры:

Бончковский, Р. — Площади и фигуры, Акад. Наук СССР. 1937. 136 стр.

Лебедев, В. — Очерки по истории точных наук. Вып. IV. Знаменитые геометрические задачи древности. 1920. 71 стр.


Самым полным сочинением на эту тему является книга:

О квадратуре круга. ОНТИ. 1936. 236 стр. Классические сочинения Архимеда, Гюйгенса, Ламберта и Лежандра, которым предпослан очерк по истории вопроса Ф. Рудио.

Информация об издании


Ответственный редактор В. А. КАМСКИЙ.


Набор и матрицы изготовлены в Типографии № 1 им. Володарского, управление издательств и полиграфии исполкома Ленгорсовета, Л-град, Фонтанка, 57. М 49584. Подп. к печати 16/IV 1941 г. Заказ № 4021
Тираж 50.000 экз.

Отпечатано с матриц в тип. «Печатный Труд». Ленинград, В. О., 11 лин., д. 40. Зак. 2306

-