стационарное уравнение Шредингера.
В действительности понятие обмена отражает перераспределение электронной плотности, получаемое в нулевом приближении теории возмущений, вследствие учета перестановочной симметрии. Говоря об обменном интеграле и связанных с ним эффектах, следует отметить ту существенную роль, которую в них играет перекрывание орбиталей а(r) и b(r), т. е. интеграл S. Действительно, при нулевом значении этого интеграла, фтогональные орбитали) обменный интеграл сводится к двух-электронному , который является положительным, и, следовательно, энергетический уровень триплетного состояния в этом случае лежит ниже синглетного (ср. с правилом Хунда для атомов). Лишь существенное перекрывание атомных орбиталей обеспечивает большое и отрицательное значение обменного интеграла и связывающий характер основного (синглетного) состояния молекулы Н2 в методе Гайтлера-Лондона. Именно это легло в основу принципа максимального перекрывания Полинга-Малликена, согласно которому предполагается, что интегралы перекрывания могут рассматриваться как критерий прочности химической связи, а локализованные химические связи можно описывать сильно перекрывающимися парами орбиталей непосредственно связанных атомов.
Завершая обсуждение понятия обмена, подчеркнем, что появление интеграла Е12 определяется не только специфическим законом квантовой механики систем тождественных частиц, но и выбором математического аппарата, а именно, квантовомеханической теорией возмущений для вырожденного случая и построения двухэлектронных функций нулевого приближения из атомных орбиталей. Вообще говоря, одна и та же функция, описывающая состояние многоэлектронной системы, может быть представлена различным образом. Соответственно этому существует и неоднозначность в разложении энергии на составные части и неоднозначность выбора понятий, в терминах которых описывают многоэлектронную систему. Важно лишь "подтвердить, что не было пропущено ничего действительно существенного" (Э. Вигнер).
Из факта, что понятие обмена связано с определенными аппроксимациями (и в ряде методов, например в методе Джеймса и Кулиджа, не используется), не следует делать вывод, будто оно не отражает физической или химической реальности. Всякое конкретное понятие ограничено определенной моделью и преходяще, как и последняя. Но на определенном уровне приближения в нем выражены определенные черты, аспекты объективной реальности. Какие же стороны реальности отражает понятие обмена? Отчасти мы уже ответили на этот вопрос, когда говорили о существенной роли перекрывания атомных орбиталей. Действительно, то обстоятельство, что при образовании молекулы электроны, принадлежавшие ранее одним атомам, могут находиться в околоядерном пространстве других, является существенной чертой образования химической связи.
Кроме того, важной особенностью описания системы тождественных частиц является учет свойств перестановочной симметрии ее волновой функции без введения каких-либо новых динамических взаимодействий. Представляя (приближенно!) волновую функцию молекулы через произведения волновых функций отдельных электронов и учитывая свойства симметрии волновой функции, мы приходим к понятию квантового обмена, отражающему свойства системы тождественных микрочастиц (электронов), описываемой в рамках одноэлектронного приближения.
Хотя в первой работе Гайтлера и Лондона необходимость учета перестановочной симметрии была осознана еще не в полной мере, в их последующих работах (1928-1932 гг.) свойства симметрии волновых функций явились основой для создания общей теории многоэлектронных систем.
Наряду с молекулой Н2 Гайтлером и Лондоном была рассмотрена задача о взаимодействии двух атомов Не, каждый из которых находится в основном состоянии. Ввиду того что перестановочная симметрия многоэлектронных функций не была учтена должным образом, рассуждения авторов не могут считаться вполне корректными, хотя они и привели к правильному результату: атомы Не, обладающие замкнутыми электронными оболочками, не проявляют способности к химическому взаимодействию.
Впоследствии в литературе высказывались сомнения относительно применимости теории возмущений в задаче о молекуле водорода и обращалось внимание на необходимость более детального исследования волновых функций электронов в области потенциального барьера [10]. В указанных работах были получены точные асимптотические формулы для синглет-триплетного расщепления термов в молекуле на больших межатомных расстояниях. В то же время следует подчеркнуть, что метод Гайтлера-Лондона приводит к правильным значениям энергии и правильным волновым функциям системы при бесконечном разделении ядер, чего нельзя, к сожалению, сказать о методе МО — наиболее распространенном методе современной квантовой химии.
Обобщение метода Гайтлера-Лондона. Создание теории спиновой и орбитальной валентности
После объяснения на основе квантовой механики природы химической связи в молекуле водорода были предприняты многочисленные попытки обобщить подход Гайтлера-Лондона на более сложные молекулы, что привело к созданию метода валентных связей. Хотя последний и не является оптимальным для проведения количественных расчетов, он существенно повлиял на развитие квантовой теории химической связи и валентности, что обусловило его необычайно широкую популярность среди ми ков.
В 20-30-х годах метод ВС разрабатывали в основном немецкие, американские и советские теоретики, среди которых следует назвать имена Гайтлера, Лондона, Вейля, Теллера, Борна, )линга, Слэтера, Ю. Б. Румера и др. При этом получили звитие различные направления: одни ученые разрабатывали авным образом математические вопросы теории многоэлектронных систем (Гайтлер, Румер, Вейль, Лондон, Слэтер, Борн), другие — сосредоточили свое внимание на развитии физико-химических основ теории (Полинг, Слэтер). Центром математического направления был Геттинген. И не случайно. Геттингенский университет представлял собой тогда один из крупнейших научных центров мира, особенно в области математики и теоретической физики. С Геттингеном связано творчество таких выдающихся ученых, как Клейн, Гильберт, Вейль, Минковский, Нетер, Борн и многих других.
На развитии математики в Геттингенском университете следует остановиться особо. Начиная с 60-х годов XIX в. центр тяжести математических исследований постепенно переносится с теории функций на другие области математики и прежде всего на алгебру. В начале XX в. процесс алгебраизации геометрии, топологии, некоторых классических глав анализа принимает особенно интенсивный характер.
Важнейшим направлением научного творчества многих гет-тингенских математиков и физиков-теоретиков становится теория групп. Во второй половине XIX — начале XX вв. немецкие ученые занимали лидирующее положение в этой области математики. В работах Шура, Фробениуса, Гордана и других были заложены основы теории представлений. Именно в Германии раньше, чем где-либо, была понята важность теоретико-групповых концепций для физики и в первую очередь для ее новых разделов-теории относительности и квантовой механики. Для квантовой химии это обстоятельство имело большое значение, ибо в период, когда еще не были разработаны эффективные приближенные способы решения многоэлектронной задачи, теория групп давала надежный и мощный метод исследования молекулярных систем. Однако далеко не все физики-теоретики того времени были знакомы с теорией групп и понимали необходимость ее изучения. Работы геттингенских ученых часто называли "групповой чумой" (gruppenpest). Большую роль в распространении теоретико-групповых концепций в квантовой механике сыграли монографии Вейля [85] и Вигнера [8].
В квантовую химию сначала проникла теория групп перестановок, а позже, примерно с 1932 г., в рамках метода МО стали учитывать пространственную симметрию молекулы. Такая последовательность естественна, так как при обобщении метода Гайтлера-Лондона на многоэлектронные системы необходимо было прежде всего уметь строить правильные (с точки зрения принципа Паули) волновые функции системы. Первые шаги в этом направлении были сделаны Гайтлером [48] и Лондоном [60, 61]. Остановимся сначала на работе Гайтлера.
Объектом исследования являлся некоторый атом А, взаимодействующий с другим атомом В (или системой атомов). Как А, так и В обладают по п валентных электронов каждый. Предполагалось, что вырождение в рассматриваемой многоэлектронной системе АВ имеет исключительно обменную природу, т. е пространственное и резонансное вырождение отсутствуют*. Это означает, в частности, что А и В представляют собой либо тождественные, либо различные, но находящиеся в одинаковых квантовомеханических состояниях системы.
Электроны каждой из систем А и В находятся в различных одноэлектронных (бесспиновых!) состояниях, т. е. описываются волновыми функциями, зависящими только от пространственных, но не спиновых переменных. При этом электроны дважды занятых состояний, соответствующие замкнутым оболочкам, не рассматриваются. "Существенной особенностью системы АВ по сравнению с молекулой водорода,- отмечает Гайтлер,- является то, что даже при отсутствии взаимодействия между А и В состояния этих многоэлектронных подсистем могут характеризоваться несколькими термами, подобно тому, как, например, конфигурации 1s2s атома Не соответствуют два терма: синглетный (1S) и триплетный (3S)"[48, с. 838]. В зависимости от того, в каком состоянии находились А и В до их сближения, между ними осуществляются взаимодействия различного рода: либо притяжение и образование стабильной молекулы, либо отталкивание.
Это взаимодействие, как показал Гайтлер, можно оценить в первом приближении теории возмущений, решая уравнение
(3.8)
где Р — перестановки 2n-электронов, образующие некоторую группу S2n; bik — матричные элементы некоторого ортогонального неприводимого представления этой группы, реализованного на многоэлектронных функциях определенного терма;