Linux: Полное руководство — страница 18 из 98

В UNIX-подобных системах в отличие от других ОС ядро минимизировано и не выполняет ни одной функции, служащей непосредственно пользователю. Для этой цели применяются многочисленные утилиты, выступающие в качестве посредников между пользователем и ядром. Только в комплекте с ними ядро образует полноценную операционную систему.

Этих компонент ОС Линус Торвальдс не создавал: они поступили из проекта GNU (

http://www.gnu.org
), участники которого с 1984 года работают над созданием полноценной UNIX-подобной ОС, целиком состоящей из свободно распространяемого программного обеспечения. К 1991 году им не хватало только ядра, и эту-то прореху и заполнил Торвальдс. Так что ОС, которой посвящена эта книга, правильнее называть не Linux, а «операционной системой GNU, основанной на ядре Linux», или просто GNU/Linux.

Итак, ядро обслуживает запросы процессов. Что же такое процесс? Это понятие является базовым в UNIX-подобных системах. Процесс можно представить себе как виртуальную машину, отданную в распоряжение одной задачи. Каждый процесс считает, что он на машине один и может распоряжаться всеми ее ресурсами. На самом же деле процессы надежно изолированы друг от друга, так что крушение одного не может повредить всей системе (сколько раз вы наблюдали в Windows, как сбой одной программы приводил к общему зависанию?).

Каждый процесс выполняется в собственной виртуальной памяти (см, рис. 3.2), в которую никакой другой процесс вмешаться не может. Этим и обеспечивается устойчивость всей системы.

Рис. 3.2. Виртуальная память процесса

Напоминаю, что такое виртуальная память. Каждому процессу разрешено считать, что его адреса начинаются с нулевого адреса и от него наращиваются. Таким образом, в 32-разрядной ОС процесс может адресовать 4 гигабайта оперативной памяти. Механизм виртуальной памяти позволяет процессу думать, что именно столько ему и выделено, хотя физически объем ОЗУ вашей машины — какие-то жалкие 256 Мбайт. Недостающую память заменяет жесткий диск путем записи временно не используемых страниц памяти в раздел подкачки (свопинга).

Разделяемость библиотек между процессами обеспечивается тем, что их код и статические данные отображаются на один и тот же участок физической оперативной памяти.

3.2. Жизнь процесса

Таблица процессов

С точки зрения ядра процесс представляет собой запись в таблице процессов. Эта запись содержит данные, существующие в течение всего времени жизни процесса, и сведения о его состоянии. Размер таблицы процессов позволяет запускать несколько сотен процессов одновременно. Другая важная информация о процессе — например, таблица всех открытых процессом файлов — хранится в его адресном пространстве. Запись в таблице процессов и пространство процесса вместе составляют контекст, или окружение, процесса. В него входят:

PID — идентификатор процесса. Он принудительно назначается планировщиком при запуске процесса.

PPID — идентификатор родительского процесса (о порождении процессов — дальше в этом же параграфе).

TTY — имя управляющего терминала (терминал, с которого запущен процесс).

WD — текущий каталог процесса, от которого отсчитываются относительные пути.

RID, RGID — реальные ID и групповой ID пользователя, запустившего процесс.

EUID, EGID — эффективные ID и GID: см. п.2.1.4.8.

NICE — показатель уступчивости. Процессы выполняются в режиме разделения времени, то есть время центрального процессора делится между готовыми к выполнению процессами с учетом их приоритета. Чем выше показатель уступчивости, тем ниже приоритет.

Переменные окружения.

Системные вызовы fork() и exec() или как размножаются процессы

Каждый процесс порождается другим процессом, использующим для этого системный вызов fork(). Таким образом, структура процессов, подобно файловой системе, древовидна. Корнем этого дерева служит init — процесс инициализации системы. Он запускается ядром первым, получает идентификатор 1 и порождает еще несколько процессов (сколько и каких, можно узнать из его конфигурационного файла

/etc/inittab
), которые, в свою очередь, при участии пользователя порождают другие процессы.

В результате системного вызова fork() родительский процесс полностью копирует свое окружение, включая адресное пространство, в дочерний, так что в момент рождения дочерний процесс отличается только своим ID. Потом дочерний процесс с помощью вызова exec() загружает в свое адресное пространство какой-нибудь исполняемый файл и начинает исполнять содержащуюся в нем программу.

Может случиться и так, что процесс выполняет вызов exec() без fork(): тогда не возникает нового процесса, но в старом начинает выполняться другая программа. Например, программа login выполняется с привилегиями суперпользователя, поскольку ей нужен доступ к файлу паролей. Проверив пароль, она устанавливает себе права зарегистрировавшегося пользователя и выполняет вызов exec(), замещая свой код кодом командной оболочки. После этого из командной оболочки изменить свои привилегии обратно на root нельзя, потому что кода программы login в текущем процессе уже нет.

Рис. 3.3. Как размножаются процессы

Каждый процесс, завершившись, возвращает родительскому процессу какое-то значение, называемое кодом завершения или кодом возврата. По соглашению разработчиков, нулевой код возврата означает успешное завершение, а ненулевые — разнообразные ошибки. Процесс-родитель может приостановить свое выполнение до завершения потомка и выполнить разные действия в зависимости от возвращенного дочерним процессом значения, а может и не делать этого.

Снимок протекающих в системе процессов — команда ps

Моментальный снимок протекающих в системе процессов можно посмотреть с помощью команды ps (process status). Без аргументов она покажет список процессов, связанных с текущей консолью (или виртуальным терминалом). Список возможных ключей команды можно, как обычно, получить по команде

ps --help
. Вот некоторые полезные из них:

-p <список_PID>: только процессы с указанными ID;

-u <список_USERID>: только запущенные указанными пользователями;

: все процессы в системе;

-f: полная форма вывода;

: вывод иерархии процессов в форме дерева.

Рис. 3.4. Фрагмент иерархии процессов

Динамика процессов — команда top

Представление о динамике процессов дает команда top. Она выводит список процессов, отсортированный по количеству запятой памяти или использованного процессорного времени, и обновляет его через указанные промежутки времени (по умолчанию через каждые 3 секунды).

Категории процессов

Процессы делятся на три категории:

Системные. Они порождаются ядром особым образом в процессе загрузки и выполняют системные функции (например, планирование процессов или смену страниц виртуальной памяти). Выполняемая ими программа берется не из исполняемого файла, а является частью ядра.

Пользовательские. Как правило, они порождаются во время сеанса работы пользователя и связаны с терминалом. Если пользовательский процесс работает в интерактивном режиме, то он захватывает терминал в монопольное владение и, пока он не завершится, пользователь не имеет доступа к командной строке на этом терминале. Пользовательские процессы могут работать также в фоновом режиме, освободив командную строку.

Демоны. Запускаются после инициализации ядра. Выполняются в фоновом режиме, не связаны ни с одним пользователем, обеспечивают работу различных служб (например, управление сетью). Главным демоном считается init — процесс инициализации системы.

Примечание

Название «демон» (daemon) не имеет ничего общего с потусторонними существами: это просто сокращение от Disk And Execution MONitor.

3.3. Взаимодействие процессов

Из всех средств межпроцессного взаимодействия, которыми так богаты UNIX-подобные ОС, в этой главе мы рассмотрим только конвейеры и сигналы.

3.3.1. Конвейер (pipe)

В главе 2 вы познакомились с командой-фильтром more, вызываемой так:

< команда_выводящая_много_строк > | more

Символ «|» — это и есть конвейер. Его можно понимать как канал, в который один процесс может только писать, а другой — только читать из него. Выборка и помещение информации в такой канал происходит в порядке FIFO (First In/First Out).

Посредством конвейера вывод одной команды подается на вход другой. Это одно из мощнейших средств UNIX, позволяющее комбинировать из простых команд длинные и изощренные цепочки обработки данных.

Например, я хочу узнать, осталась ли у меня еще свободная виртуальная консоль, чтобы зарегистрироваться там и спросить справку по какой-то команде, не прерывая процессов, протекающих на других консолях. Я знаю, что виртуальную консоль обслуживает программа mingetty, которая после регистрации на этой консоли замещает свой код на код командной оболочки. Значит, мне нужно подсчитать количество процессов mingetty. Есть команда wc (word count), умеющая подсчитывать число строк, слов или байтов в файле. Есть команда grep, умеющая выбирать из файла строки, содержащие указанный фрагмент текста. Соединяю их конвейером:

$ ps -е | grep mingetty | wc -l

3.3.2. Сигналы

Механизм сигналов — это средство, позволяющее сообщать процессам о некоторых событиях в системе, а процессу-получателю — должным образом на эти сообщения реагировать. Послать сигнал может сам процесс (например, при попытке деления на ноль), ядро (при сбое оборудования), пользователь или другой процесс (требуя прервать выполнение задачи).

Всего в Linux 63 сигнала, обозначаемых своими номерами или символическими именами. Имена всех сигналов начинаются с SIG, и эту приставку часто опускают: так, сигнал, требующий прекратить выполнение процесса, называется SIGKILL, или KILL, или сигнал 9.

Получив сигнал, процесс может: игнорировать его; вызвать для обработки установленную по умолчанию функцию; вызвать собственный обработчик (перехватить сигнал). Некоторые сигналы (например, KILL) перехватить или игнорировать невозможно.

Пользователь может послать сигнал процессу с идентификатором PID командой

$ kill [-s <сигнал>] 

где <сигнал> — это номер или символическое имя.

Несколько часто встречающихся сигналов перечислены в таблице 3.1. Полный список можно получить по команде

kill -l
(list).


Сигналы Linux Таблица 3.1

ИмяНазначениеРеакция процесса-получателя
1HUPHangup — отбойДемоны перечитывают свои конфигурационные файлы
2INTInterruptПрекратить выполнение (перехватывается)
3QUITСильнее, чем INTто же
4ILLIllegal instruction. Программная ошибкаОбработать ошибку. По умолчанию — прекратить выполнение
8FPEFloating point exception Вычислительная ошибка (деление на ноль)Обработать ошибку. По умолчанию — прекратить выполнение
9KILLУбить процессНемедленно прекратить выполнение. Не перехватывается
11SEGVSegmentation violation. Попытка доступа к чужой области памятиОбработать ошибку. По умолчанию — прекратить выполнение
13PIPEНет процесса, читающего из конвейераОбработать ошибку
15TERMTermination. Завершить процессКорректно завершить выполнение. Перехватывается
17CHLDЗавершился дочерний процессПринять возвращенное им значение

Некоторые сигналы посылаются по нажатии комбинации клавиш. Так, Ctrl+C посылает сигнал INT, a Ctrl+\ (обратный слэш) — сигнал QUIT. Получает эти сигналы тот процесс, который сейчас занимает консоль — например, ожидает вашего ввода.

Команда kill носит такое убийственное название потому, что чаще всего используется для принудительного завершения процессов, вышедших из-под контроля, забирающих много ресурсов или просто повисших. По умолчанию она посылает сигнал TERM. Он отличается от сигнала KILL тем, что приказывает процессу завершиться аккуратно, закрыв открытые им файлы, удалив временные и т.п. Сигнал же KILL действует на процесс как выстрел в голову.

Понятно, что для того, чтобы прервать выполнение процесса, нужно быть его хозяином или иметь привилегии суперпользователя.

3.4. Командная оболочка. Bash