Магнитные карты и ПК — страница 5 из 18

Например, в пятибитном коде цифра 6, записываемая как 0110 в двоичной системе и содержащая четное число битов в состоянии 1, будет тогда закодирована в виде 01101 путем прибавления в качестве бита четности 1, что в сумме приведет к 3 — нечетной цифре.

В семибитном коде буква Т, определяемая битами 001011, наоборот, будет закодирована как 0010110 путем добавления в качестве бита четности 0, что приведет общее число битов в состоянии 1 к 3 — также нечетной цифре.

Если во время считывания обнаруживается, что один или несколько символов содержат четное число битов, устройство заключает, что считывание было проведено с ошибкой, и, следовательно, необходимо еще раз вставить карту в считывающее устройство. В таком случае обычно прибегают к способу, состоящему в протирании карты о рукав одежды, что действительно может помочь очистить загрязнившуюся дорожку, но не является гарантированным средством решения любой проблемы.

Важно иметь в виду, что некоторые ошибки могут исказить два бита одного символа, и данная схема контроля четности в этом случае не определит ошибку. Поэтому для лучшей защиты следует предусмотреть, по крайней мере, дополнительный уровень безопасности, а еще лучше — два.


КОНТРОЛЬ С ПОМОЩЬЮ LRC

LRC (Longitudinal Redundancy Check) — продольный резервный контроль — наиболее простое из всех средств контроля за целостностью блока данных с помощью одного единственного дополнительного символа. Но при использовании только одного его не обеспечивается уровень безопасности больший, чем при контроле по четности, и многократные ошибки могут исказить контрольный символ, нарушить работу схемы контроля.

Защита с помощью LRC, применяемая к словам из любого числа битов, состоит в последовательном применении операции исключающего ИЛИ (XOR) ко всем словам, а затем в присоединении к ним результата такого вычисления в виде одного единственного слова.

Например, рассмотрим следующий блок данных (без бита четности, младший бит стоит в начале):



Определение LRC происходит по следующим этапам:



Защищенный блок данных будет тогда записан в следующем виде:



или, добавляя бит четности к каждому из составляющих его слову:



Предположим, что первое слово подвержено двойной ошибке. Это позволяет преодолеть контроль четности:



Вычислим LRC этого блока ошибочных данных (без учета входящих в него битов четности и LRC):



Вычисленный код LRC блока с ошибками (5) отличается от LRC, переданного в составе блока без ошибок (0), что индицирует наличие ошибки, не позволяя, однако, определить ее местоположение: LRC — механизм не исправления ошибок, а только их обнаружения.

В подобном случае следует повторно проводить считывание до тех пор, пока контроль четности и по LRC пройдет успешно.

В частном случае стандартизованных магнитных карт (а также большого числа нестандартных магнитных носителей) обычно прибегают к защите с помощью LRC всех символов, начиная с флажка start и заканчивая флажком end включительно. Таким образом, LRC занимает место сразу после флажка end, то есть непосредственно перед нулями заполнения.

Вероятность того, что одна или несколько ошибок смогут ускользнуть от такого двойного контроля, крайне мала. Несмотря на это, как правило, используется дополнительный третий уровень защиты.


КОНТРОЛЬ С ПОМОЩЬЮ LUHN CHECK

Рассматриваемая чисто арифметическая обработка, применимая только к цифровым данным, существует в двух вариантах в зависимости от четного или нечетного числа цифр контролируемого числа.

Если число включает четное количество цифр, необходимо, прежде всего, умножить на два каждую цифру из нечетного ряда и вычесть из полученного результата 9, если он превышает или равен 10. Все цифры, обработанные таким образом, затем складываются, и к ним добавляются все цифры четного ряда.

Контролируемое число считается верным тогда и только тогда, когда окончательный результат кратен 10. В случае карт с нечетным количеством цифр поступают наоборот: удваиваются цифры четного ряда.

На практике довольствуются добавлением одной цифры или «ключа контроля» к цифрам, правильность которых должна быть гарантирована, — и это вне зависимости от количества содержащихся в числе цифр.

Естественно, эта цифра выбирается таким образом, чтобы проверялись все перечисленные выше правила. Можно доказать, что это всегда возможно и что рассматриваемая цифра единственна.

К примеру, защищенные таким каскадным способом тройного контроля цифры кредитной карточки, считываемые на дорожке ISO 2, вполне могут считаться защищенными от любого случайного сбоя. Между тем, они не носят никакого конфиденциального характера, поскольку полностью отпечатываются кассовым аппаратом на любом чеке и хранятся продавцом в качестве доказательства.

Только проверка подписи или, еще лучше, четырехзначного конфиденциального кода может считаться достаточным доказательством подлинности произведенной транзакции, хотя банки все чаще стараются на договорной основе перекладывать эту ответственность на плечи своих клиентов.


ПРИМЕРЫ КОДИРОВАННОЙ ИНФОРМАЦИИ

Несмотря на то что стандарты, фиксирующие содержимое различных дорожек (и особенно ISO 2), касаются, в основном, карт с финансовой направленностью, единообразие которых должно обеспечиваться на международном уровне, они, в конце концов, применяются и подавляющим большинством изготовителей самых разнообразных карт.

Для изготовителей это своего рода упрощение и залог надежности, а для нас — удача в том смысле, что нам проще будет раскрывать маленькие секреты карт, считыванием которых мы сейчас и займемся.


Банковские карты

Прежде всего, обратимся к изучению банковских карточек, которые выпускаются в строжайшем соответствии со стандартами, и дорожки ISO 2, поскольку она используется чаще других.

Примерное содержимое банковской карточки



Пример, приведенный выше, естественно, не взят с персональной банковской карточки автора, а составлен на базе выдуманного номера, широко используемого на табличках, указывающих на то, что в данном месте принимаются банковские карточки: 4970 1012 3456 7890. И хотя этот номер недействителен (ключ контроля намеренно неверен), его первые цифры совершенно правдивы. Они идентифицируют изготовителя карточки, а следующие принадлежат ее владельцу. Таким образом, номера MASTERCARD и EUROCARD начинаются с 5, a VISA — с 4.

Например, цифры 4970 встречаются в начале номеров карт VISA, выпущенных La Poste, а номера карт, выпущенных, скажем, Societe Generale, начинаются с 4973. За границей встречаются другие номера, например 4567.

Первое поле данных (между флажком и разделителем) содержит только номер карты в том виде, в котором он выдавлен. Второе поле начинается сразу после разделителя с четырех цифр, указывающих срок действия данной карты в соответствии с форматом ААММ (год, год, месяц, месяц). Мы выбрали 9912 (декабрь 1999) совершенно произвольно.

Группа из трех цифр (101), которая следует затем, встречается, похоже, на всех банковских карточках. Речь идет о «служебном коде» данного приложения. Стоящие далее нули заменяют более конфиденциальные данные, которые никогда не пропечатываются ни на чеках продавцов, ни на билетах. Здесь содержится в зашифрованном виде копия четырехзначного конфиденциального кода владельца карты. Аналогичный код используется и в банковских чип-картах.

Создается впечатление, что эти так называемые дискретизированные данные просто-напросто игнорируются в некоторых приложениях, которые, обрабатывая транзакции (пересылки), проводимые только с небольшими суммами, не контролируют конфиденциальный код (например, автоматы платы за проезд по скоростной дороге, автоматы в телефонных кабинках и т. д.). Естественно, это значительно упрощает операции, но может вызвать серьезные проблемы в случае привлечения к ответственности или опротестования.

На рис. 2.2 представлено содержимое дорожки ISO 2, подтверждающее то, о чем мы так легко догадались сами, и вносящее некоторые полезные уточнения.



Рис. 2.2.Стандартизованное содержимое дорожки ISO 2


Например, из него мы узнаем, что «чистые» данные дорожки ISO 2 составляют 37 цифровых символов (по 5 бит). Учитывая биты start, end и LRC, получаем максимум 40 символов, речь о которых шла при рассмотрении рис. 2.1.

Интересно также отметить, что номер карточки (PAN — Primary Account Number, первичный банковский счет) может содержать до 19 цифр, хотя мы больше привыкли к номерам из 16 цифр (а когда-то существовали номера только из 13 цифр).

На рис. 2.3 показано содержимое дорожки ISO 1. Оно кажется более сложным, поскольку является алфавитно-цифровым.

Кроме данных, на дорожке ISO 2 расположено только имя владельца карточки, выраженное 26 символами (более короткие имена дополняются пробелами, а слишком длинные рискуют быть урезанными).



Рис 2.3.Стандартизованное содержимое дорожки ISO 1


Перед номером карты стоит символ формата (FORMAT), который, как нам кажется, для банковских карточек всегда обозначается буквой В.

На дорожке ISO 1 может размешаться до 76 символов данных, что в сумме с тремя так называемыми символами окружения дает 79. Стандартизованное содержимое цифровой дорожки ISO 3 представлено исключительно для информации на рис. 2.4, так как эта дорожка, являясь чисто цифровой, практически никогда не используется. Два символа формата (в данном случае речь идет о двух дополнительных цифрах) стоят в начале номера карточки, в то время как поле, рассчитанное минимум на 49 цифр, зарезервировано для данных, носящих название рабочих и данных безопасности. Предполагаемое использование этой зоны могло бы в значительной степени усилить безопасность магнитных карт, но, возможно, это стоило бы дороже, чем решение проблем, связанных с подделками.