Журналистка слышала, что я кое-что знаю о масштабировании, и просила меня «весело, простенько и по-научному рассказать о биологии Годзиллы (в связи с выходом нового фильма)… с какой скоростью такое большое животное может ходить… сколько энергии будет вырабатывать его обмен веществ, сколько оно могло бы весить и т. д.». Разумеется, этот новый американский Годзилла XXI в. был самым крупным из всех воплощений этого персонажа: его рост достигал целых 106 м, более чем вдвое превышая рост чудовища в исходном японском фильме, составлявший «всего» 50 м. Я немедленно ответил, что почти любой ученый, к которому она обратится, скажет ей, что никакое животное типа Годзиллы на самом деле существовать не может. Если бы оно состояло приблизительно из тех же базовых материалов, что и мы (то есть все живые существа), оно было бы нежизнеспособно, так как обрушилось бы под собственным весом.
Научное обоснование этого утверждения сформулировал более четырехсот лет назад, на заре современной науки, Галилей. Самую суть его составляет элегантное рассуждение о масштабировании: Галилей задался вопросом о том, что произойдет, если попытаться бесконечно увеличивать животное, дерево или здание, и выяснил, что у такого увеличения имеются пределы. Его рассуждение стало базовым шаблоном для всех последующих рассуждений о масштабировании вплоть до настоящего времени.
Галилея не зря часто называют «отцом современной науки», имея в виду его многочисленные фундаментальные вклады в физику, математику, астрономию и философию. Наверное, более всего известны его легендарные опыты, в которых он бросал предметы разных размеров, изготовленные из разных материалов, с вершины наклонной Пизанской башни, чтобы продемонстрировать, что все они достигают земли за одно и то же время. Это неочевидное наблюдение противоречило Аристотелевой догме, согласно которой тяжелые предметы падают быстрее, чем легкие, и скорость их падения прямо пропорциональна их весу. Это фундаментальное заблуждение никем не подвергалось сомнению в течение почти двух тысяч лет, пока Галилей наконец не проверил его на опыте. Задним числом кажется удивительным, что до исследований Галилея никто, по-видимому, не задумывался о справедливости этого «самоочевидного факта», не говоря уже о том, чтобы проверить его.
Галилей в возрасте тридцати пяти и шестидесяти девяти лет; он умер менее чем десятью годами позже. Старение и смертность, которые наглядно иллюстрируют эти портреты, подробно обсуждаются в главе 4
Опыт Галилея произвел революцию в нашем фундаментальном понимании движения и динамики и проложил дорогу Ньютону с его знаменитыми законами движения. Эти законы привели к появлению точной, обладающей предсказательной силой численной математической системы понимания любого движения, будь то на Земле или на другом конце Вселенной, объединив тем самым небеса и Землю под властью одних и тех же законов природы. Это не только дало новое определение места человека в мироздании, но и создало эталон для всех последующих научных исследований, в том числе подготовив почву для наступления века Просвещения и научно-технических революций двух последних столетий.
Галилей также знаменит тем, что усовершенствовал конструкцию телескопа и открыл луны Юпитера, что убедило его в справедливости Коперниковой точки зрения на строение Солнечной системы. Однако Галилею пришлось дорого заплатить за последовательное отстаивание гелиоцентрической гипотезы, вытекавшей из его наблюдений. В возрасте шестидесяти девяти лет, тяжелобольным, он предстал перед судом инквизиции, который признал его воззрения еретическими. Он был вынужден отречься от своих взглядов и после недолгого тюремного заключения провел остаток жизни (еще девять лет, в течение которых он ослеп) под домашним арестом. Его книги были запрещены и попали в печально известный ватиканский «Индекс запрещенных книг» (Index Librorum Prohibitorum). Лишь в 1835 г., более двухсот лет спустя, его работы были исключены из этого списка, и только в 1992-м – по прошествии почти четырех веков – папа Иоанн Павел II публично выразил сожаление по поводу обращения церкви с Галилеем. Мысль о том, что какие-то слова, написанные в незапамятные времена на еврейском, греческом и латинском языках, основанные на чьих-то личных мнениях, догадках и предрассудках, могли столь безапелляционно перевешивать результаты научных наблюдений и математическую логику, действует отрезвляюще. Как ни печально это признавать, мы и сегодня не можем похвастаться полной свободой от таких заблуждений.
Несмотря на ужасную трагичность того, что случилось с Галилеем, его заключение принесло человечеству огромную выгоду. Возможно, это произошло бы и в другом случае, но именно находясь под домашним арестом, он написал, вероятно, лучшую свою работу, одно из поистине великих произведений научной литературы, озаглавленное «Беседы и математические доказательства, касающиеся двух новых отраслей науки» (Discorsi e dimostrazioni matematiche intorno a due nuove scienze, 1638)[23]. Эта книга, по сути дела, подводит итоги предыдущих сорока лет работы Галилея, в течение которых он пытался разработать систематический подход к задаче логического, рационального понимания окружающего нас природного мира. Этой работой он заложил тот фундамент, на котором впоследствии возникли не менее основополагающие труды Исаака Ньютона и практически вся позднейшая наука. Эйнштейн не преувеличивал, когда, говоря об этой книге, назвал Галилея «отцом современной науки»[24].
Это великая книга. Несмотря на непривлекательное название и несколько архаичный язык и стиль изложения, ее на удивление приятно и интересно читать. Она написана в форме «бесед» трех человек (Симпличио, Сагредо и Сальвиати), которые встречаются на протяжении четырех дней и обсуждают различные вопросы, великие и малые, ответов на которые искал Галилей. Симпличио символизирует «простого» обывателя, интересующегося устройством мира и задающего ряд вопросов, кажущихся наивными. Сальвиати – ученый (Галилей!), знающий ответы на все вопросы, которые излагаются в авторитетной, но терпеливой манере, а Сагредо играет роль посредника между этими двумя, то подвергая сомнению утверждения Сальвиати, то подбадривая Симпличио.
На второй день своих бесед они переходят к несколько туманному на первый взгляд обсуждению прочности веревок и балок, и как раз в тот момент, когда читатель уже начинает недоумевать, куда приведет этот довольно нудный, перегруженный подробностями разговор, туман рассеивается, все освещается, и Сальвиати делает следующее заявление:
Из того, что было сейчас доказано, мы ясно видим невозможность не только для искусства, но и для самой природы беспредельно увеличивать размеры своих творений. Так, невозможна постройка судов, дворцов и храмов огромнейшей величины, коих весла, мачты, балки, железные скрепы, словом, все части держались бы прочно. Однако и природа не может произвести деревья несоразмерной величины, так как ветви их, отягощенные собственным чрезвычайным весом, в конце концов сломились бы. Равным образом невозможно представить себе костяк человека, лошади или другого живого существа слишком большой величины, который бы держался и соответствовал своему назначению… увеличение размеров до чрезмерной величины имело бы следствием то, что тело было бы раздавлено и сломано тяжестью своего собственного веса[25].
Вот и все: Галилей чуть ли не четыреста лет назад предугадал наши параноидальные фантазии о гигантских муравьях, жуках, пауках и тех же самых Годзиллах, столь ярко изображаемые в комиксах и фильмах, а затем самым блестящим образом продемонстрировал их физическую невозможность. Точнее говоря, он показал, что реально достижимая величина всех этих существ ограничена некими фундаментальными пределами. Так что многочисленные образы научной фантастики в области фантастики и остаются.
Рассуждение Галилея отличается элегантностью и простотой, но имеет при этом весьма глубокие следствия. Кроме того, оно служит превосходным введением во многие из тех концепций, которые мы будем рассматривать в следующих главах. Оно состоит из двух частей: геометрического доказательства, демонстрирующего, как масштабируются площадь и объем любого объекта при увеличении его размеров (рис. 5), и инженерного доказательства, показывающего, что прочность колонн, поддерживающих здания, конечностей, на которые опираются животные, или стволов деревьев пропорциональна площади их поперечного сечения (рис. 6).
В следующей рамке приведен общедоступный вариант первого из этих доказательств, показывающего, что если форма объекта неизменна, то при увеличении его размеров все его поверхности увеличиваются пропорционально квадрату, а все его объемы – пропорционально кубу линейных размеров.
Для начала рассмотрим простейший геометрический объект, например квадратную плитку, и представим себе ее увеличение до большего размера (см. рис. 5). Например, предположим, что длина ее стороны равна 1 м, то есть ее площадь, полученная перемножением длин смежных сторон, равна 1 м × 1 м = 1 м². Если удвоить длины всех ее сторон, увеличить их с 1 до 2 м, то площадь плитки увеличится до 2 м × 2 м = 4 м². Точно так же, если длины сторон утроить (увеличить до 3 м), площадь возрастет до 9 м² – и так далее. Общее правило очевидно: площадь возрастает пропорционально квадрату длины.
Это соотношение остается справедливым не только для квадратов, а для любой двумерной геометрической фигуры, если ее форма остается неизменной при одинаковом увеличении всех линейных размеров. Простой пример дает круг: например, при удвоении его радиуса площадь круга увеличивается в 2 × 2 = 4 раза. В более общем случае удвоение всех линейных размеров вашего дома при сохранении неизменными его формы и конфигурации приведет к увеличению площадей всех поверхностей, например стен и полов, в четыре раза.