Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность — страница 5 из 25

Развенчивать мифы невероятно весело. Просто посмотрите на беззаботные взрывы смеха и улыбки до ушей ведущих телешоу «Разрушители легенд»{17}, и вы увидите: это карьера с высокой степенью удовлетворенности от работы.

Гораздо сложнее вносить поправки в мифы. Многие преобладающие в культуре взгляды на математику не то чтобы ошибочны — они просто искажены, неполны или гиперболизированы. Важны ли вычисления? Конечно же, но ими дело не ограничивается. Уделяет ли математика внимание деталям? Да, равно как вязание и паркур. Был ли Карл Гаусс прирожденным гением? Ну да, но красивые доказательства в основном находят не депрессивные немецкие перфекционисты{18}, а обычные люди вроде нас с вами.

Перед тем как завершить этот раздел, я дам еще одно, последнее объяснение того, как думают математики, — шанс провести ревизию и прокомментировать некоторые популярные мифы. Как большинство мифов, они опираются на правду. И, как большинство мифов, они пренебрегают сомнениями и пробуксовкой на пути к осмыслению, которое делает нас людьми — и математиками.



Пару лет назад, когда я жил в Англии, у меня был ученик по имени Кори. Он напоминал мне нежноголосого 12-летнего Бенджамина Франклина: молчаливый, проницательный, длинные рыжие волосы, круглые очки. Я легко мог представить, как он изобретает бифокальные линзы.

Кори вкладывал душу в каждое домашнее задание, находил ясные связи между темами и собирал свои тетрадки с такой тщательностью и терпением, что я всегда опасался, как бы он не опоздал на следующий урок. Неудивительно, что на первой большой контрольной в ноябре Кори расщелкал все задачи.

Вернее, все задачи, на которые у него хватило времени.

Прозвенел звонок, но последняя четверть бланка ответов все еще была пуста. Он набрал чуть больше 70 баллов из 100 и явился ко мне на следующий день с нахмуренным лбом.

— Сэр, — сказал он (поскольку Англия — поразительная страна, где даже к нескладным 29-летним учителям обращаются с большим почтением), — почему время на решение контрольных ограничено?

Я полагаю, что честность — наилучшая политическая линия.

— Не потому, что скорость очень важна. Мы просто хотим удостовериться, что школьники могут справиться с контрольной сами, без посторонней помощи.

— Так почему нельзя работать после звонка?

— Ну, если бы я держал весь класс в заложниках весь день, другие учителя могли бы взбелениться. Они хотят, чтобы вы знали физику и географию, потому что ностальгически привязаны к реальности.

Я осознал, что никогда не видел Кори в таком состоянии: зубы сжаты, глаза потускнели. Всем своим видом он излучал разочарование.

— Я мог решить больше задачек, — сказал он. — У меня просто кончилось время.

— Я знаю, — кивнул я.

Больше нечего было сказать.

Намеренно или нет, школьная математика посылает громкий, четкий сигнал: «Скорость — это всё». Контрольные нужно решать быстро. Чем раньше сдашь контрольную, тем быстрее приступишь к домашней работе. Вы только посмотрите, как заканчиваются уроки — по звонку, как раунд извращенной принудительной викторины по логарифмам. Математика превращается в гонку, успех становится синонимом скорости.

Все это в высшей степени глупо.

Скорость имеет одно баснословное преимущество: она экономит время. Но математика требует глубокого проникновения в суть поставленной задачи, подлинного понимания, элегантного подхода. Вы не достигнете ничего из вышеперечисленного, перемещаясь со скоростью 1000 км/ч. Вы лучше разберетесь в математике, если будете думать тщательно, а не на скорую руку, и вы лучше изучите ботанику, рассматривая каждую травинку, а не скача как одержимый через пшеничное поле.

Кори понимал это. Я уповаю только на то, что учителя наподобие меня[18] не пытались, вопреки нашим лучшим намерениям, переубедить его.

Моя жена, математик-исследователь, однажды указала мне на курьезный паттерн математической жизни.

• Шаг 1. В воздухе повис сложный и захватывающий вопрос, важная гипотеза нуждается в доказательстве. Многие пытаются приручить зверя, но безуспешно.

• Шаг 2. В конце концов кто-нибудь находит длинное и запутанное доказательство, оно чрезвычайно глубокое, но за мыслью сложно уследить.

• Шаг 3. Со временем публикуются новые доказательства, они становятся все короче и проще, пока в конце концов самое первое доказательство не приобретает статус артефакта: неэффективная лампочка Эдисона выходит из употребления, уступая место более современным и изящным инженерным решениям.



Почему эта траектория настолько распространена?

Ну, в первый раз, когда вы находите истину, вы часто бредете колдобистым, извилистым путем. Вам делает честь то терпение, которое вы проявили, чтобы пережить все перипетии. Но требуется еще больше терпения, чтобы продолжить думать дальше. Только тогда вы сумеете отделить необходимые шаги от излишних, пойти напрямик и сократить нудное 120-страничное доказательство до цельного десятистраничного.

В 1920-е годы алгебра, вероятно, была самой скучной из всех отраслей математики[19]. Заниматься алгеброй означало увязнуть в трясине мелочей, угодить в терновый куст громоздких технических формальностей, в дисциплину деталей.

И вот в 1921 году математик по имени Эмми Нётер[20] опубликовала статью под названием «Теория идеалов в кольцевых областях». Забрезжила заря новой эпохи. Позже ее коллега сказал, что это рассвет «абстрактной алгебры как осознанной дисциплины». Нётер не была заинтересована в распутывании конкретных числовых схем. На самом деле она отложила саму идею числá в сторону. Для нее имели значение только симметрия и структура. «Она учила нас думать, пользуясь простыми и, соответственно, общими терминами, — вспоминал впоследствии один из ее коллег. — Поэтому она открыла путь к выявлению алгебраических закономерностей там, где раньше закономерности не были ясны».



Хорошая научная работа прежде всего требует сосредоточения на мельчайших деталях. Великая научная работа требует пренебрежения к деталям.

Для Нётер абстрагирование было не просто интеллектуальной привычкой, а стилем жизни. «Она часто перескакивала на родной немецкий, когда была поглощена какой-нибудь идеей, — рассказывал потом другой ее коллега[21]. — Она любила пешие прогулки. Она приглашала учеников на променад в субботу днем и была настолько поглощена разговорами о математике, что забывала об автомобилях, и ученикам приходилось оберегать ее».



Великих математиков не волнуют тривиальности наподобие пешеходных переходов и интенсивности автомобильного потока. Они смотрят умственным взором на нечто большее.

В 1998 году Сильвия Серфати[22] была поглощена вопросом: как определенные вихри эволюционируют со временем. Она даже написала об этом монографию («Вихри в магнитной модели Гинзбурга-Ландау»), но чувствовала, что зашла в тупик, решая эту головоломку.

«Много хороших исследований, — говорила она позже, — на самом деле начинаются с очень простых вещей, элементарных фактов, краеугольных кирпичиков… Прогресс в математике начинается с понимания системного случая, простейшего примера, в котором вы сталкиваетесь с той или иной задачей. И зачастую достаточно несложных вычислений; просто никому не приходило в голову рассмотреть задачу под таким углом».

Вы можете атаковать замок, ломясь в главные ворота и сражаясь с оборонительными силами лоб в лоб. Или вы можете попытаться лучше понять устройство замка — и, возможно, найти более легкий способ попасть внутрь.

Математик Александр Гротендик предложил другую метафору: представьте, что задача — это вкуснейший фундук, но лакомое ядрышко защищает скорлупа. Как расщелкать ее?



Есть два базовых подхода. Во-первых, взять молоток и бить по ореху, пока он не треснет. Результат достигнут, но этот метод грубый и требует усилий. Во-вторых, вы можете погрузить орех в воду.

По словам Гротендика, «время от времени вы трете орех, чтобы жидкость проникала внутрь, иначе вы потеряете время. Через недели и месяцы скорлупа становится мягче — и в один прекрасный день достаточно будет надавить рукой, чтобы скорлупа треснула, как очень спелое авокадо»[23].

В течение двух десятилетий Серфати урывками продвигалась вперед, потому что вместе с коллегами позволила скорлупе впитывать воду. Наконец в 2015 году она нашла верный путь и ринулась в атаку. Задача была решена за несколько месяцев.

В каждой области математики есть свой святой Грааль. Для многих статистиков Граалем было гауссово корреляционное неравенство[24].

«Я знаю людей, которые работали над ним 40 лет, — говорит Дональд Ричардс, специалист в сфере статистики из Пенсильвании. — Что касается меня, то я работал над ним 30 лет». Многие ученые предпринимали мужественные попытки — стостраничные вычисления, изощренные геометрические конструкции, новые гипотезы, основанные на математическом анализе и теории вероятностей, — но никто не добился Грааля. Некоторые усомнились и заподозрили, что этот Грааль — ложь и миф.

И вот в один прекрасный день в 2014 году Ричардс получил электронное письмо от немецкого пенсионера по имени Томас Ройен. В приложении был вордовский файл. Это выглядело странно: практически все математики набирают свои работы с помощью программы LaTeX. И зачем же бывший сотрудник фармацевтической компании обратился к ведущему исследователю в сфере статистики?

Выяснилось, что этот пенсионер доказал гауссово корреляционное неравенство. Он использовал аргументы и формулы, которые знакомы каждому выпускнику университета. Озарение пришло, когда он чистил зубы.