Миллиарды и миллиарды. Размышления о жизни и смерти на рубеже тысячелетий — страница 7 из 42

Лишь недавно возникла противоположная тенденция. Рассыпавшиеся осколки нашего рода вновь сближаются, заново узнают друг друга и становятся единым целым. Это стало возможным исключительно благодаря развитию коммуникационных технологий. Одомашнив лошадь, мы смогли переправлять письма (и людей) на расстояния в сотни километров за считаные дни. Совершенствование парусных судов позволило добираться до самых отдаленных уголков планеты, хотя и медленно. В XVIII в. плавание из Европы в Китай занимало около двух лет. Как бы то ни было, даже разделенные огромными расстояниями социумы получили возможность обмениваться посланниками и товарами. Впрочем, для абсолютного большинства китайцев того времени европейцы были такими же экзотичными, как обитатели Луны. Подлинное устранение изолированности регионов планеты требует коммуникационной технологии, намного опережающей по скорости верховую лошадь и парусник, охватывающей весь мир и достаточно дешевой, чтобы обычный человек мог хотя бы время от времени ею пользоваться. Первым шагом на этом пути стало изобретение телеграфа и прокладка трансокеанских кабелей. Телефонная связь, использующая те же кабели, значительно расширила возможности этой технологии. Наконец, громадным рывком вперед стало появление радио, телевидения и спутниковой связи.

Сегодня мы обмениваемся информацией – обыденно, не задумываясь и не испытывая ни малейшего трепета, – со скоростью света. От скорости лошади или парусника к скорости света – это рост почти в сотню миллионов раз. В силу фундаментальных законов существования мира, сформулированных Эйнштейном в специальной теории относительности, не существует возможности передавать информацию быстрее скорости света. За одно столетие мы достигли физических пределов скорости коммуникации. Мы уже владеем настолько эффективной технологией со столь масштабными возможностями применения, что в социальном отношении пока до нее не дозрели.

Позвонив на другой континент, вы заметите крохотные задержки между окончанием собственной реплики и реакцией собеседника. Это время, за которое звук нашего голоса доходит до телефона, преобразуется в электрический сигнал, в этом виде бежит по проводам до передающей станции, в микроволновом диапазоне излучается на спутник связи, находящийся на геосинхронной орбите, отражается на принимающую станцию спутниковой связи, проходит еще какой-то путь по проводам, приводит в движение мембрану телефонной трубки (на другой стороне земного шара), преобразуется в звуковые волны в очень узком слышимом диапазоне, попадает в ухо человека, посредством электрохимических импульсов передается в головной мозг и там обрабатывается.

Расстояние от Земли до геосинхронной орбиты и обратно свет пробегает за четверть секунды. Чем дальше разнесены передатчик и приемник, тем больше нужно времени на передачу. При радиосвязи с астронавтами лунной миссии «Аполлон» задержка между вопросами и ответами была длиннее. Время прохождения света от Земли до Луны и обратно составляет 2,6 секунды. При самом благоприятном положении космического корабля на орбите Марса получение сообщения занимает 20 минут. В августе 1989 г. мы получили кадры, переданные автоматической станцией «Вояджер-2» от Нептуна, его спутников, колец и арок. Со скоростью света пять часов неслись к нам эти данные с отдаленных рубежей Солнечной системы. Это был самый затяжной сеанс коммуникации за всю предыдущую историю человечества.

* * *

Во многих ситуациях свет ведет себя как волна. Представим, например, что свет проходит в затемненную комнату через две параллельные щели и попадает на экран. Что мы увидим на экране? Изображение щелей (а точнее – ряд параллельных ярких и темных полос) – «интерференционный узор». Пройдя сквозь пару щелей, свет не движется прямо вперед, как летящая пуля, а распространяется во все стороны под разными углами. Там, где накладываются друг на друга гребни двух волн, мы в силу эффекта так называемой усиливающей интерференции видим яркое изображение щели, в местах наложения впадин ослабляющая интерференция создает темную полосу. Это характерное поведение волны. Ту же картину можно наблюдать, если проделать два отверстия в опоре пирса на уровне воды.

В то же время свет ведет себя еще и как поток крохотных «летящих пуль» – фотонов. На этом основан принцип действия обычного фотоэлемента (например, в фотоаппарате или в калькуляторе со световой подзарядкой). Каждый попадающий на него фотон выбивает из светочувствительной поверхности электрон. Множество фотонов создают поток электронов, или электрический ток. Но как свет может быть одновременно и волной, и частицей? Чтобы не ломать голову, лучше представить его себе как нечто третье, не волну и не поток частиц в чистом виде, – нечто, не имеющее прямых аналогий в обыденном мире, а лишь ведущее себя в одних условиях как волна, а в других – как частица. Корпускулярно-волновой дуализм – очередная порция лекарства от человеческой гордыни. Природа не обязана соответствовать нашим ожиданиям и предпочтениям и быть понятной для нашего ограниченного ума.

Что касается практического применения, свет аналогичен звуку. Световые волны являются трехмерными, имеют частоту, длину волны и скорость распространения (скорость света). Единственное – но потрясающее – отличие состоит в том, что для распространения им не нужна среда, например вода или воздух. Свет Солнца и далеких звезд доходит до нас, хотя пространство между нами является почти идеальным вакуумом. В открытом космосе астронавты не могут переговариваться, кроме как по радио, даже находясь в нескольких сантиметрах друг от друга. Отсутствует воздух, в котором мог бы распространяться звук. Но видят они друг друга прекрасно. Сблизившись настолько, чтобы их шлемы соприкасались, они смогут и слышать друг друга. Если из вашей комнаты внезапно исчезнет воздух, вы не услышите, как сосед по комнате жалуется на это обстоятельство, хотя какое-то мгновение сможете наблюдать, как он жестикулирует и разевает рот.

Обычный видимый свет – воспринимаемый нашим зрением – имеет очень высокую частоту: около 600 трлн (6 × 1014) волн попадает на нашу сетчатку каждую секунду. Поскольку скорость света равна 30 млрд (3 × 1010) сантиметров в секунду, длина волны видимого света составляет 30 млрд, деленные на 600 трлн, или 0,00005 (3 × 1010 / 6 × 1014) = 0,5 × 10–4 см. Это слишком мало, чтобы разглядеть, даже если бы нашелся способ подсветить чем-то эти волны и получить их изображение.

Если звуки определенных частот воспринимаются нами как разные музыкальные тона, то свет определенных частот мы интерпретируем как разные цвета. Частота красного цвета около 460 трлн (4,6 × 1012) волн в секунду, фиолетового – около 710 трлн (7,1 × 1012). Между ними располагаются все остальные цвета радуги. Каждому свету соответствует своя частота.




По аналогии с парадоксом о смысле музыкального тона для глухого от рождения человека можно задаться столь же хитрым вопросом: что есть цвет для человека, рожденного слепым? И в этом случае ответом будет уникальная, со всей достоверностью определяемая частота световой волны, которую можно измерить и зафиксировать точно так же, как фиксируется музыкальный тон. При должной подготовке и знании физики слепой от рождения человек отличит розовый от малинового и кроваво-красного. При наличии хорошего спектрометра он сможет различать оттенки гораздо точнее, чем нетренированный человеческий глаз. Частоту 460 трлн герц зрячие люди интерпретируют как «красное». Но этой частотой (460 ТГц) и привычной интерпретацией все и исчерпывается. Здесь ничего больше нет, никакого чуда, каким бы красивым нам ни казалось это зрелище.

Подобно звукам, слишком высоким или низким для человеческого уха, есть частоты световых волн, или «цвета», выходящие за пределы нашего зрительного восприятия. Это диапазоны гораздо более высоких частот (порядка миллиарда миллиардов[8] – 1018 – волн в секунду у гамма-излучения) и гораздо более низких (менее одной волны в секунду у длинных радиоволн). Двигаясь по спектру световых волн от высоких частот к низким, мы встречаем широкие полосы с собственными названиями: гамма-излучение, рентгеновское излучение, ультрафиолетовое излучение, видимый свет, инфракрасное излучение и радиоволны. Все эти волны распространяются в вакууме. Все являются такими же «полноценными» световыми волнами, что и обычный видимый свет.

Различные частотные диапазоны дают собственную картину астрономических явлений. Небо выглядит в разных лучах по-разному. Например, яркие звезды в гамма-диапазоне невидимы. Наоборот, фантастические гамма-барстеры, обнаруженные орбитальными обсерваториями, исследующими космос в гамма-диапазоне, практически незаметны в обычном видимом свете. Если бы мы до сих пор – как большую часть своего существования – наблюдали Вселенную только в видимом спектре, то не знали бы, что в ней есть источники гамма-излучения. Это относится и к источникам рентгеновского, ультрафиолетового, инфракрасного и радиоизлучения, а также экзотических нейтрино и космических лучей и, возможно, гравитационных волн[9].

Мы приспособлены воспринимать видимый свет. Такой вот световой шовинизм. Лишь к этому свету чувствителен человеческий глаз. Если бы в силу физической трансформации наши предки научились передавать и принимать радиоволны, то древние люди смогли бы общаться на огромных расстояниях, а овладение рентгеновским зрением позволило бы им заглядывать внутрь растений, животных, минералов и друг друга. Почему же наши глаза не обрели восприимчивости к излучению с другими частотами?

Любой материал, какой ни возьми, «склонен» поглощать свет определенных частот, и никаких других. У каждого вещества свои предпочтения. Свет и химический состав вещества имеют естественный резонанс. Свет определенных частот, например гамма-излучение, поглощают практически все материалы. Импульс гамма-излучения быстро слабеет из-за поглощения воздухом. Космические гамма-лучи, проделывающие гораздо более долгий путь в земной атмосфере, полностью поглощаются прежде, чем достигнут поверхности планеты. Здесь, на Земле, у нас очень темно – если смотреть в гамма-спектре, – кроме ближайших окрестностей таких объектов, как ядерные боеголовки. Чтобы увидеть гамма-лучи, идущие от центра Галактики, нужно поместить орган зрения в космосе. Это относится и к рентгеновским лучам, ультрафиолету и большей части инфракрасного диапазона.