Мир физики и физика мира. Простые законы мироздания — страница 5 из 32

–21 секунды).

На противоположном конце временной шкалы космологам и астрономам удалось с поразительной точностью выяснить возраст (нашей области) Вселенной, и теперь мы совершенно уверены, что Большой взрыв произошел 13,8242 миллиарда лет назад (плюс-минус несколько миллионов лет). Некоторые могут считать нашу уверенность в точности этой цифры слишком большой смелостью – а тем более те, кто продолжает цепляться за средневековое представление о том, что Вселенной всего шесть тысяч лет; поэтому позвольте мне объяснить, как мы ее установили.

Для начала два допущения, которые я подробнее проанализирую позже; пока же скажу только, что оба они имеют убедительное практическое подтверждение: (1) законы физики работают одинаково во всей Вселенной и (2) пространство во всех направлениях неизменно (в смысле плотности и распределения галактик). Это придает нам уверенность в том, что для изучения всего космоса можно пользоваться наблюдениями, сделанными с Земли или со спутников на земной орбите. Это и позволило нам вычислить возраст Вселенной, используя несколько различных методов.

Например, многое можно узнать, изучая звезды в нашей Галактике. Мы знаем, сколько живут звезды в зависимости от их яркости и размера, что предопределяет, насколько быстро они выгорят в результате реакции термоядерного синтеза. Это значит, что можно вычислить возраст самых древних звезд и определить максимальный возраст Вселенной. Поскольку возраст самых древних звезд во Вселенной составляет около 12 миллиардов лет, наша Вселенная не может быть моложе.

Затем, измеряя яркость и цвет света далеких галактик, достигающего наших телескопов, можно вычислить, с какой скоростью расширяется наша Вселенная и как эта скорость менялась во времени. Чем дальше мы заглядываем, тем дальше уходим в прошлое, поскольку свету, который мы наблюдаем, нужны миллиарды лет, чтобы достигнуть Земли; таким образом, мы получаем информацию о далеком прошлом. А если мы знаем, с какой скоростью расширялась Вселенная, можно вернуться во времени к тому моменту, когда все было сжато в одной точке пространства, – это и есть момент рождения Вселенной.

С другой стороны, изучая мельчайшие температурные отклонения в далеком космосе (так называемый космический микроволновый фон), можно получить довольно точное представление о том, какой Вселенная была еще до образования звезд и галактик, всего через несколько сотен тысяч лет после Большого взрыва. Это дает возможность еще точнее определить ее возраст.

Однако одно дело – утверждать, что физика позволяет нам больше узнать о Вселенной в кратчайших и величайших временных и пространственных масштабах, другое дело – это то, что мы открыли законы, работающие везде, и это я считаю столь же замечательным. Возможно, вам это не кажется удивительным; возможно, для вас само собой разумеется, что законы природы работают не только в человеческом масштабе, но и в других пространственных, временных и энергетических масштабах. Однако это совсем не столь очевидно.

Чтобы рассмотреть этот вопрос более подробно, я введу еще три понятия, которые не всегда известны изучающим физику при всей их обязательности: понятия универсальности, симметрии и редукционизма.

Универсальность

Первый «универсальный»[10] закон физики был открыт Исааком Ньютоном[11].Видел ли он на самом деле яблоко, упавшее с дерева на ферме его матери, что дало толчок к открытию закона тяготения, а также как именно выглядит математическая формулировка этого закона – это сейчас неважно. Главное, что Ньютон понял: сила, которая притягивает яблоко к земле, имеет то же происхождение, что и сила, которая заставляет Луну вращаться вокруг Земли, а оба процесса можно легко описать с помощью одной и той же простой математической формулы. Одна и та же сила притяжения определяет поведение предметов на Земле, заставляет Луну вращаться вокруг Земли, планеты – вокруг Солнца, а само Солнце – вокруг центра Млечного Пути. Сила притяжения, которая формирует жизнь на Земле, – та же, которая способствовала формированию всей Вселенной со времени Большого взрыва. Тот факт, что на смену ньютоновскому пониманию тяготения более чем через два столетия пришло более точное эйнштейновское, никак не меняет того, что именно Ньютон первым поведал миру об универсальности этого закона.

Общая теория относительности Эйнштейна, которая уточнила постулаты Ньютона, также заставила нас совершенно по-новому взглянуть на реальность, о чем я буду более подробно говорить в следующей главе. Ведь теория Эйнштейна характеризуется совершенно удивительной универсальностью, и, чтобы вы меня лучше поняли, я приведу здесь лишь один ее аспект. Прекрасное математическое построение, которое Эйнштейн продемонстрировал миру в 1915 году, все еще является самой действенной теорией, объясняющей природу пространства и времени, причем чрезвычайно точной. С ее помощью можно также сделать справедливое предположение, что гравитационное поле будет замедлять течение времени: чем сильнее это поле, тем медленнее течет время.

Этот эффект имеет то удивительное следствие, что часы внутри земного ядра (в глубоком гравитационном колодце) тикают чуть медленнее, чем на поверхности. Другими словами, на каждые 60 лет земной истории ее ядро прибавляло в возрасте на одну секунду меньше, чем кора. Эта цифра была вычислена с использованием формулы общей теории относительности; не совсем ясно, как нам удастся экспериментально ее подтвердить, но доверие к этой формуле так велико, что ни один физик ни капли не сомневается в ее достоверности.

Если поразмыслить об изложенной выше теории, в ней можно обнаружить нечто парадоксальное. В конце концов, если мы пробурим отверстие в Земле и доберемся до ее центра, мы больше не будем чувствовать силу тяготения, поскольку она будет действовать на нас с одинаковой силой со всех сторон, – мы будем ощущать невесомость. Однако воздействие на течение времени обусловлено не силой тяготения в центре Земли, которая равна нулю, а скорее существующим там гравитационным потенциалом. Это количество энергии, которое необходимо для того, чтобы вытянуть тело из этой точки в то место, где сила земного притяжения отсутствует. Физик сказал бы, что ядро Земли – это самая глубокая часть потенциального колодца Земли, где наиболее явно сказывается замедление течения времени.

С помощью измерений можно найти разницу в скорости течения времени даже на высоте нескольких метров. Часы, которые висят на втором этаже нашего дома, находятся под воздействием более слабой силы тяготения, чем часы на первом этаже (первые дальше от земного ядра), и будут идти с еле заметным ускорением. Но этот эффект ничтожен: за один миллион лет они уйдут вперед всего на секунду.

Если вы относитесь к этой информации скептически, позвольте вас заверить, что количественный эффект силы тяготения на время абсолютно реален; если бы мы не учитывали его в телекоммуникационной практике, мобильник в вашем кармане не мог бы с такой точностью определять ваше местоположение. Последнее зависит от сигналов, которые ваш телефон принимает от спутника GPS на орбите и посылает обратно. То время, которое уходит у электромагнитных волн на преодоление этого расстояния, должно определяться с точностью до нескольких сотых долей миллисекунды (и тогда ваше местоположение будет определяться с точностью до нескольких метров). Однако этот принцип не сработает, если мы будем считать, что время везде течет с одинаковой скоростью. На самом деле даже высокоточные атомные часы на борту спутников каждый день убегают вперед примерно на одну сорокамиллионную долю секунды, и их приходится специально замедлять, чтобы показания соответствовали более медленно идущим земным часам. Без этого спутниковые часы забегали бы вперед и ваше местоположение согласно GPS каждый день смещалось бы километров на десять, в результате чего такая информация оказалась бы бесполезной.

Примечательно также, что те самые уравнения общей теории относительности, которые объясняют, как сила тяготения вызывает мельчайшие изменения в скорости тиканья часов, могут еще и рассказать нам о явлениях крупнейшего масштаба, рисуя историю Вселенной на протяжении миллиардов лет, с самого Большого взрыва, а могут даже помочь предсказать ее будущее. Эйнштейновская теория относительности одинаково справедлива и для самых маленьких, и для самых больших временных периодов.

Однако у этой универсальности есть свои границы. Мы знаем, что в области самых мелких размерных и временных масштабов физика обычного мира (и по Ньютону, и по Эйнштейну) перестает работать; вместо нее приходится пользоваться теорией квантовой механики. Как я объясню дальше, по сути, само понятие времени в квантовой теории разительно отличается от понятия, используемого в общей теории относительности. И это одна из многих проблем, которые возникают перед физиками, когда они пытаются свести теорию относительности и квантовую механику в единое целое, теорию квантового тяготения.

Симметрия

Универсальность законов природы имеет интереснейшее математическое обоснование и связано с одной из самых мощных научных идей – с идеей симметрии.

На простейшем уровне все понимают, что значит, если какая-то геометрическая фигура является симметричной, например квадрат. Если вы проведете вертикальную линию через его центр, разделив его надвое (или сделаете то же с помощью горизонтальной или диагональной линии), а потом поменяете обе части местами, вы не измените форму начальной фигуры. Тот же эффект достигается, если квадрат поворачивать на число градусов, кратное 90. Круг даже еще более симметричен, потому что его можно поворачивать на любое число градусов – и его внешний вид останется неизменным.

В физике симметрия может значить нечто гораздо большее, чем просто инвариантность определенной формы при повороте или перевороте объекта. Когда физики говорят о том, что какая-то физическая система обладает симметрией, они имеют в виду, что какое-то свойство этой системы остается неизменным при всяких прочих изменениях. Эта мысль, как выясняется, обладает колоссальным потенциалом. «Глобальные» виды симметрии наблюдаются, когда законы физики остаются неизменными (неизменен способ, с помощью которого они описывают какой-то параметр Вселенной), а все остальные области в одинаковой степени изменяются, или трансформируются.