МЛЕЧНЫЙ ПУТЬ №1, 2016(16) — страница 37 из 41

Рис. 1. Тесная пара черных дыр за мгновение до слияния. Изображение с сайта ligo.org

http://www.ligo.org/science/GW-GW2.php



Такое слияние черных дыр – взрыв грандиозной мощности, но только уходит вся эта излученная энергия не в свет, не в частицы, а в колебания пространства. Излученная энергия составит заметную часть от исходной массы черных дыр, и выплеснется это излучение за доли секунды».

Как же обнаружить гравитационные волны? Самыми перспективными оказались детекторы, в которых отслеживается расстояние между двумя не связанными друг с другом, независимо подвешенными телами, например, двумя зеркалами. Из-за колебания пространства, вызванного гравитационной волной, расстояние между зеркалами будет то чуть больше, то чуть меньше. Чем больше длина плеча, тем большее абсолютное смещение вызовет гравитационная волна заданной амплитуды. Эти колебания сможет почувствовать лазерный луч, бегающий между зеркалами. Такая схема способна регистрировать колебания в широком диапазоне частот, от 10 герц до 10 килогерц, и это именно тот интервал, в котором будут излучать сливающиеся пары нейтронных звезд или черных дыр звездных масс».

Современная реализация этой идеи на основе интерферометра Майкельсона выглядит следующим образом. В двух длинных, длиной в несколько километров, перпендикулярных друг другу вакуумных камерах подвешиваются зеркала. На входе в установку лазерный луч расщепляется, идет по обеим камерам, отражается от зеркал, возвращается обратно и вновь соединяется в полупрозрачном зеркале. Добротность оптической системы исключительно высока, поэтому лазерный луч не просто проходит один раз туда-обратно, а задерживается в этом оптическом резонаторе надолго. В «спокойном» состоянии длины подобраны так, чтобы два луча после воссоединения гасили друг друга в направлении датчика, и тогда фотодетектор оказывается в полной тени. Но стоит лишь зеркалам под действием гравитационных волн сместиться на микроскопическое расстояние, как компенсация двух лучей станет неполной и фотодетектор уловит свет. И чем сильнее смещение, тем более яркий свет увидит фотодатчик.

Слова «микроскопическое смещение» даже близко не передают всей тонкости эффекта. Смещение зеркал на длину волны света, то есть микрон, заметить проще простого даже без каких-либо ухищрений. Но при длине плеча 4 км это отвечает колебаниям пространства-времени с амплитудой 10-10. Заметить смещение зеркал на диаметр атома тоже не представляет проблем – достаточно запустить лазерный луч, который пробежит туда-сюда тысячи раз и получит нужный набег фазы. Но и это дает от силы 10-14. А нам нужно спуститься по шкале смещений еще в миллионы раз, то есть научиться регистрировать сдвиг зеркала даже не на один атом, а на тысячные доли атомного ядра!

На пути к этой поистине поразительной технологии физикам пришлось преодолевать множество трудностей. В гонке за гравитационными волнами участвовал целый список стран; но лидерами являются две лаборатории — американский проект LIGO  иhttps://www.ligo.caltech.edu/ итальянский детектор Virgo http://www.virgo-gw.eu/ .

LIGO включает в себя два одинаковых детектора, расположенных в Ханфорде (штат Вашингтон) и в Ливингстоне (штат Луизиана) и разнесенных друг от друга на 3000 км. Наличие двух установок важно сразу по двум причинам. Во-первых, сигнал будет считаться зарегистрированным, только если его увидят оба детектора одновременно. А во-вторых, по разности прихода гравитационно-волнового всплеска на две установки – а она может достигать 10 миллисекунд – можно примерно определить, из какой части неба этот сигнал пришел.


Рис. 2. Гравитационно-волновой детектор в Ханфорде – один из двух детекторов обсерватории LIGO.

http://www.nature.com/news/the-hundred-year-quest-for-gravitational-waves-in-pictures-1.19340


Создание гравитационной обсерватории LIGO было инициативой трех ученых из Массачусетского технологического института (MIT) и из Калифорнийского технологического института (Калтеха). Это Райнер Вайсс, который реализовал идею интерферометрического гравитационно-волнового детектора, Рональд Дривер, добившийся достаточной для регистрации стабильности лазерного света, и Кип Торн, теоретик-вдохновитель проекта, ныне хорошо известный широкой публике в качестве научного консультанта фильма «Интерстеллар».

Хотя первоначальный импульс проекту задали США, обсерватория LIGO является по-настоящему международным проектом. В него вложились, финансово и интеллектуально, 15 стран, и членами коллаборации числятся свыше тысячи человек. Важную роль в реализации проекта сыграли советские и российские физики. С самого начала активное участие в реализации проекта LIGO принимала группа Владимира Брагинского из МГУ, а позже к коллаборации присоединился и Институт прикладной физики из Нижнего Новгорода.

Коллаборация LIGO не ограничилась одной лишь констатацией факта регистрации гравитационных волн, но и провела первый анализ того, какие это наблюдение имеет последствия для астрофизики. Авторы оценили, с какой частотой происходят слияния массивных черных дыр. Получилось как минимум одно слияние в кубическом гигапарсеке за год, что сходится с предсказаниями наиболее оптимистичных в этом отношении моделей.


О чем расскажут гравитационные волны

Открытие нового явления после десятилетий поисков – это не завершение, а лишь начало нового раздела физики. Конечно, регистрация гравитационных волн от слияния двух черных дыр важна сама по себе. Это прямое доказательство и существования черных дыр, и существования двойных черных дыр, и реальности гравитационных волн, и, если говорить вообще, доказательство правильности геометрического подхода к гравитации, на котором базируется ОТО. Но для физиков не менее ценно то, что гравитационно-волновая астрономия становится новым инструментом исследований, позволяет изучать то, что раньше было недоступно.

Во-первых, это новый способ рассматривать Вселенную и изучать космические катаклизмы. Для гравитационных волн нет препятствий, они без проблем проходят вообще сквозь все во Вселенной. Они самодостаточны: их профиль несет информацию о породившем их процессе. Наконец, если один грандиозный взрыв породит и оптический, и нейтринный, и гравитационный всплеск, то можно попытаться поймать все их, сопоставить друг с другом и разобраться в недоступных ранее деталях, что же там произошло. Уметь ловить и сравнивать такие разные сигналы от одного события – главная цель всесигнальной астрономии.

http://elementy.ru/novosti_nauki/432626/Neytrinnaya_astrofizika_delaet_pervye_shagi


Когда детекторы гравитационных волн станут еще более чувствительными, они смогут регистрировать дрожание пространства-времени не в сам момент слияния, а за несколько секунд до него. Они автоматически пошлют свой сигнал-предупреждение в общую сеть наблюдательных станций, и астрофизические спутники-телескопы, вычислив координаты предполагаемого слияния, успеют за эти секунды повернуться в нужном направлении и начать съемку неба до начала оптического всплеска.

Во-вторых, гравитационно-волновой всплеск позволит узнать новое про нейтронные звезды. Слияние нейтронных звезд – это фактически самый последний и самый экстремальный эксперимент над нейтронными звездами, который природа может поставить для нас, а нам как зрителям останется только наблюдать результаты. Наблюдательные последствия такого слияния могут быть разнообразными, и, набрав их статистику, мы сможем лучше понимать поведение нейтронных звезд в таких экзотических условиях.

В-третьих, регистрация всплеска, пришедшего от сверхновой, и сопоставление его с оптическими наблюдениями позволит наконец-то разобраться в деталях, что же там происходит внутри, в самом начале коллапса. Сейчас у физиков по-прежнему остаются сложности с численным моделированием этого процесса.

В-четвертых, у физиков, занимающихся теорией гравитации, появляется вожделенная «лаборатория» по изучению эффектов сильной гравитации. До сих пор все эффекты ОТО, которые мы могли непосредственно наблюдать, относились к гравитации в слабых полях. О том, что происходит в условиях сильной гравитации, когда искажения пространства-времени начинают сильно взаимодействовать сами с собой, мы могли догадываться лишь по косвенным проявлениям, через оптический отголосок космических катастроф.

В-пятых, появляется новая возможность для проверки экзотических теорий гравитации.


История Вселенной 

Задача обнаружения реликтовых гравитационных волн, которые стали следствием событий, произошедших сразу после зарождения Вселенной, на порядок сложнее, чем детекция сигнала от такого большого и катастрофического события, как слияние черных дыр{15}. Однако в конце концов эта задача будет решена, что позволит совершить значительный шаг в изучении истории Вселенной.

Гравитационные волны не поглощаются веществом, и это позволит «увидеть», что происходило во Вселенной в самые первые мгновения после Большого взрыва. Задача эта, конечно, гораздо более сложна, и открытие реликтовых гравитационных волн – дело не завтрашнего дня. Несомненно, однако, что достаточно чувствительные приборы будут созданы, а реликтовые гравитационные волны обнаружены, что позволит «просеять» космологические теории и отделить те, которые не соответствуют полученным данным.

Одна из тайн Вселенной, в разгадке которой может помочь нынешнее открытие, касается загадочного темного вещества, которое, по расчетам, должно вместе с темной энергией составлять большую часть состава Вселенной, но при сегодняшнем уровне развития технологий не может быть обнаружено. Темное вещество чрезвычайно слабо взаимодействует с обычным, не излучает и не поглощает свет, и потому его чрезвычайно трудно (если вообще возможно) обнаружить обычными астрофизическими методами. Но темное вещество имеет массу и подчиняется закону всемирного тяготения (и, разумеется, законам общей теории относительности). Темное вещество, как и обычное, способно излучать гравитационные волны, и потому именно гравитационно-волновая астрофизика даст возможность изучить недоступные ранее для наблюдений объекты Вселенной. А ведь темного вещества во Вселенной в шесть раз больше, чем вещества обычного!