Млечный Путь № 4 2020 — страница 48 из 51

Вы берете другой набор квантовых объектов, таких как электроны, и запускаете их также через две щели. Вы получаете интерференционную картину, но теперь вы можете сделать настройку: запускаете электроны по одному через щели. С каждым новым электроном вы записываете новую точку данных о том, в каком месте мишени он "приземлился". После тысяч и тысяч электронов вы, наконец, смотрите на возникающую закономерность. А что видите? Интерференцию. Каким-то образом каждый электрон мешает самому себе, действуя в основном как волна.

На протяжении многих десятилетий физики ломали голову и спорили о том, что это означает на самом деле. Электрон проходит через обе щели одновременно, как-то мешая себе? Это кажется нелогичным и физически невозможным, но у нас есть способ определить, правда это или нет: мы можем это измерить.

Итак, мы поставили тот же эксперимент, но на этот раз у нас есть небольшой поток света, которым мы освещаем каждую из двух щелей. Когда электрон проходит сквозь щель, свет слегка "возмущается", поэтому мы можем "пометить", через какую из двух щелей прошел электрон. С каждым электроном, который проходит сквозь щель, мы получаем сигнал, исходящий из одной из двух щелей. Наконец-то каждый электрон посчитан, и мы знаем, через какую щель он прошел. И вот, в конце концов, когда мы смотрим на экран, мы видим, что интерференционной картины больше нет.

Что происходит? Как будто электроны "знают", смотрите вы на них или нет. Сам акт наблюдения за этой установкой - вопрос "через какую щель прошел каждый электрон?" - меняет исход эксперимента.

Если вы измеряете, через какую щель проходит квант, он ведет себя так, как будто проходит через одну и только одну щель: он ведет себя как классическая частица. Если вы не измеряете, через какую щель проходит квант, он ведет себя как волна, действуя так, как будто он прошел через обе щели одновременно, создавая интерференционную картину.

Что на самом деле здесь происходит? Чтобы это выяснить, нам нужно провести больше экспериментов.

Один из экспериментов, который вы можете устроить, - это поставить подвижную маску перед обеими щелями, при этом по-прежнему пропуская через них электроны по одному. Практически это теперь осуществляется следующим образом:

- подвижная маска с отверстием начинается с блокировки обеих щелей,

- маска перемещается, так что первая щель становится незамеченной,

- маска продолжает движение, так что вторая щель тоже не маскируется (вместе с первой),

- маска продолжает движение до тех пор, пока первая щель снова не будет перекрыта (но вторая еще не будет замаскирована),

- и, наконец, обе щели снова закрываются.

Как меняется узор?

Как и следовало ожидать:

- вы видите узор с одной щелью (без помех), если открыта только одна щель,

- двухщелевой (интерференционный) рисунок, если обе щели открыты,

- и гибрид двух вариантов.

Когда оба пути доступны одновременно, без ограничений, вы получаете интерференцию и волнообразное поведение. Но если у вас есть только один доступный путь или если какой-то путь каким-то образом ограничен, вы получите поведение, подобное частицам.

Итак, мы возвращаемся к тому, что обе щели находятся в "открытом" положении, и освещаем обе, когда пропускаем электроны по одному через двойные щели.

Если свет является одновременно энергетическим (высокая энергия каждого фотона) и интенсивным (большое количество фотонов), вы вообще не получите интерференционной картины. 100% ваших электронов будут измеряться на самих щелях, и вы получите результаты, которые ожидаете только от классических частиц.

Но если вы снизите энергию на фотон, вы обнаружите, что, когда вы опускаетесь ниже определенного энергетического порога, свет не взаимодействует с каждым электроном. Некоторые электроны пройдут через щели, не регистрируясь, через какую щель они прошли, и вы начнете возвращать интерференционную картину, когда снизите энергию фотонов.

То же самое и с интенсивностью: когда вы ее понижаете, узор "два ворса" медленно исчезает, сменяясь узором интерференции, а если увеличиваете интенсивность, все следы интерференции исчезают.

И тогда у вас появляется блестящая идея использовать фотоны, чтобы измерить, через какую щель проходит каждый электрон, но уничтожить эту информацию, прежде чем смотреть на экран.

Эта идея известна как эксперимент с квантовым ластиком, и он дает удивительный результат: если вы уничтожите информацию в достаточной степени, даже после измерения, через какую щель прошли частицы, вы увидите на экране интерференционный узор.

Каким-то образом природа знает, есть ли у нас информация, которая "отмечает" прорезь, через которую прошла квантовая частица. Если частица каким-либо образом помечена, вы не получите интерференционной картины, когда посмотрите на экран; если частица не помечена (или была измерена, а затем снята с пометки, уничтожив ее информацию), вы получите картину интерференции.

Мы даже пытались провести эксперимент с квантовыми частицами, квантовое состояние которых было "сжато", чтобы быть более узким, чем нормальное, и они не только демонстрируют ту же квантовую странность, но и получаемая интерференционная картина также сжимается по сравнению со стандартным двойным щелевым узором.

В свете всей этой информации очень соблазнительно задаться вопросом, о чем спрашивали тысячи и тысячи ученых и студентов-физиков: что все это говорит о природе реальности?

Означает ли это, что природа по своей сути недетерминирована?

Означает ли это, что то, что мы сохраняем или разрушаем сегодня, может повлиять на исход событий, которые уже должны были быть определены в прошлом?

Что наблюдатель играет фундаментальную роль в определении того, что реально?

Ответ, к сожалению, заключается в том, что мы не можем сделать вывод, является ли природа детерминированной или нет, локальной или нелокальной, или реальна ли волновая функция. Эксперимент с двойной прорезью показывает настолько полное описание реальности, насколько вы когда-либо собираетесь получить. Знать результаты любого эксперимента, который мы можем провести, - это настолько далекая перспектива, насколько нам позволяет физика. Остальное - всего лишь интерпретация.

Если ваша интерпретация квантовой физики может успешно объяснить то, что нам показывают эксперименты, значит, все остальные недействительны. Все остальное - эстетика, и хотя люди могут спорить о своей любимой интерпретации, никто не может претендовать на то, что она "настоящая" больше, чем любая другая. Но в этих экспериментальных результатах можно найти суть квантовой физики. Мы навязываем Вселенной свои предпочтения на свой страх и риск. Единственный путь к пониманию - это прислушиваться к тому, что Вселенная говорит нам о себе.


***

Тим Андерсен, доктор философии


Стрела времени: возможно, мы сможем вспомнить будущее


Я наливаю воду в кружку и ставлю кружку в микроволновую печь. Чтобы довести до кипения, требуется две минуты при высокой температуре. Микроволновая печь издает звуковой сигнал, и я бросаю чайный пакетик, конечно же "Эрл Грей", прислушиваясь к звукам пузырей.

Чай очень горячий, я достаю кружку и ставлю на стойку, чтобы чай заварился.

Предположим, я сейчас воспроизведу это в обратном порядке.

Беру со стойки горячую чашку. Кладу ее в микроволновую печь и достаю чайный пакетик. Микроволновая печь издает звуковой сигнал, а часы идут две минуты, пока чай внутри остывает до комнатной температуры. Микроволновое излучение внутри отводит тепло и сохраняет его в виде электричества. Теперь вода комнатной температуры. Я достаю чашку, и вода выливается в кран.

Почему это имеет смысл в одном направлении, а в другом - нет?

Все дело в причине и следствии.

Микроволновая печь является причиной нагрева воды. Нагрев воды - это эффект. Если вы перевернете процесс, в этом нет смысла.

Причина, по которой вещи имеют смысл в определенном порядке от причины к следствию, связана со вторым законом термодинамики, который гласит, что энтропия, уровень беспорядка в системе, всегда должна возрастать. Таким образом, кажется, что причина должна иметь меньшую энтропию, чем ее следствие.

Предположим, я уронил кружку с чаем на пол. Кружка разлетается на куски. Чай разливается по полу. Энтропия кружки и чая увеличилась из-за того, что им позволили разбиться и пролиться. Одно должно быть причиной другого.

Термодинамика была разработана в конце 18 века и сводится к своду законов. Вот два основных закона:

1. Энергия не может быть создана или уничтожена.

2. Энтропия со временем должна возрастать.

Закон N1 - это абсолютный закон физики. Его строго соблюдают даже в квантовой механике.

Закон N 2, однако, является законом физики "де-факто". Его не соблюдают строго, а соблюдают только в среднем. Итак, средние значения в термодинамике имеют тенденцию быть довольно надежными, потому что, если каждая частица делает ставки и есть триллионы триллионов частиц, тогда закон больших чисел говорит, что среднее значение так же хорошо, как закон. Но это все еще не строгий закон физики.

Все строгие законы физики "обратимы во времени", что означает, что причины и следствия фактически взаимозаменяемы. Теоретически, в закрытой системе чашка может подпрыгнуть и собраться заново. Это просто маловероятно.

Любому энтузиасту физики все это известно, но мало известно, почему это так. Почему энтропия увеличивается в одном направлении, а не в другом? Если все физические процессы обратимы во времени, то это должно позволить некоторым процессам увеличивать энтропию в одном направлении, в то время как другие увеличивают энтропию в обратном направлении времени. Однако мы не видим, чтобы это произошло на самом деле. Энтропия всех физических процессов увеличивается только в одном направлении.

Главный вопрос: почему?

Эта проблема называется проблемой стрелы времени.