Мы – электрические. Новая наука об электроме тела — страница notes из 14

Примечания

1

На англ. HMMWV, или Humvee, – состоящий на вооружении ВС США многоцелевой внедорожник, на базе которого собираются гражданские внедорожники “Хаммер”. – Прим. ред.

2

Condliffe J. Glaxo and Verily Join Forces to Treat Disease by Hacking Your Nervous System. MIT Technology Review, 1 August 2016.

3

Магическое мышление – идея о том, что на действительность можно влиять посредством символических психических или физических действий или мыслей. – Здесь и далее, если не указано иное, – прим. перев.

4

Трансгуманизм – философская концепция, предлагающая использовать достижения науки (в том числе биоинформатики и нанотехнологии) для улучшения умственных и физических возможностей человека и избавления от болезней и страданий.

5

“Сделай сам” (англ. Do It Yourself). – Прим. ред.

6

Hutchinson A. For the Golden State Warriors, Brain Zapping Could Provide an Edge. The New Yorker, 15 June 2016.

7

Reardon S. “Brain doping” may improve athletes’ performance. Nature 531 (2016), pp. 283–4.

8

Нарицательный термин, использующийся по отношению к любому маркетинговому трюку, откровенно вводящему потребителя в заблуждение. – Прим. ред.

9

Программное обеспечение. – Прим. ред.

10

Blackiston D. J., Levin M. Ectopic eyes outside the head in Xenopus tadpoles provide sensory data for light-mediated learning. Journal of Experimental Biology 216 (2013), pp. 1031–40; Durant F. et al. Long-Term, Stochastic Editing of Regenerative Anatomy via Targeting Endogenous Bioelectric Gradients. Biophysical Journal 112, no. 10 (2017), pp. 2231–43.

11

Перевод В. Микушевича.

12

Pancaldi G. Volta: Science and Culture in the Age of Enlightenment. Princeton, NJ: Princeton University Press, 2005, p. 111.

13

Galvani L. Commentary on the Effects of Electricity on Muscular Motion. Norwalk, CN: Burndy Library, 1953, p. 79.

14

Pancaldi, Volta, p. 54; Morus I. R. Frankenstein’s Children: Electricity, Exhibition, and Experiment in Early-Nineteenth-Century London. Princeton, NJ: Princeton University Press, 1998, p. 232.

15

Needham D. Machina Carnis: The Biochemistry of Muscular Contraction in its Historical Development. Cambridge: Cambridge University Press, 1971, pp. 1–26.

16

Needham, Machina Carnis, p. 7.

17

Kinneir D. A New Essay on the Nerves, and the Doctrine of the Animal Spirits Rationally Considered. London, 1738, pp. 21, 66–7.

18

O’Reilly M. F., Walsh J. J. Makers of Electricity. New York: Fordham University Press, 1909, p. 81.

19

Cohen I. B. Benjamin Franklin’s Science. Cambridge, MA: Harvard University Press, 1990, p. 42.

20

Finger S., Piccolino M. The Shocking History of Electric Fishes. Oxford: Oxford University Press, 2011, pp. 282–5.

21

Bresadola M., Piccolino M. Shocking Frogs: Galvani, Volta, and the Electric Origins of Neuroscience. Oxford: Oxford University Press, 2013, p. 27.

22

Bergin W. Aloisio (Luigi) Galvani (1737–1798) and Some Other Catholic Electricians. In: Windle B. (ed.) Twelve Catholic Men of Science. London: Catholic Truth Society, 1912, pp. 69–87.

23

Bresadola & Piccolino, Shocking Frogs, p. 27.

24

O’Reilly & Walsh, Makers of Electricity, p. 152; Bergin, Aloisio (Luigi) Galvani, p. 75.

25

Cavazza M. Laura Bassi and Giuseppe Veratti: an electric couple during the Enlightenment. Institut d’Estudis Catalans, vol. 5, no. 1 (2009), pp. 115–24 (pp. 119–21).

26

Messbarger R. M. The Lady Anatomist: The Life and Work of Anna Morandi Manzolini. Chicago: University of Chicago Press, 2010, p. 157.

27

Frize M. Laura Bassi and Science in 18th-Century Europe. Berlin/Heidelberg: Springer, 2013. См. также: Messbarger, The Lady Anatomist, pp. 171–3.

28

Foccaccia M., Simili R. Luigi Galvani, Physician, Surgeon, Physicist: From Animal Electricity to Electro-Physiology. In: Whitaker H. et al. (eds) Brain, Mind and Medicine: Essays in Eighteenth-Century Neuroscience. Boston: Springer, 2007, pp. 145–58 (p. 154).

29

Bresadola & Piccolino, Shocking Frogs, p. 76.

30

Там же, p. 89.

31

Там же, p. 122.

32

O’Reilly & Walsh, Makers of Electricity, p. 133.

33

См. среди прочего: Bernardi W. The controversy on animal electricity in eighteenth-century Italy. Galvani, Volta and others. In: Bevilacqua F., Fregonese L. (eds) Nuova Voltiana: Studies on Volta and His Times. Vol. 1. Milan: Hoepli, 2000, pp. 101–12 (p. 102); Bresadola & Piccolino, Shocking Frogs, p. 143.

34

Pancaldi, Volta, pp. 14–5.

35

Там же, p. 20.

36

Там же, p. 31.

37

Там же, p. 91.

38

Там же, p. 111.

39

Там же, p. 111.

40

Bresadola & Piccolino, Shocking Frogs, p. 152.

41

Там же, pp. 143–4.

42

Bernardi, The controversy, pp. 104–5.

43

Материалы о работе французской комиссии: Blondel C. Animal Electricity in Paris: From Initial Support, to Its Discredit and Eventual Rehabilitation. In: Bresadola M., Pancaldi G. (eds) Luigi Galvani International Workshop, 1998, pp. 187–204.

44

Blondel, Animal Electricity, p. 189.

45

Volta A. Memoria seconda sull’elettricita animale (14 May 1792). Цитируется по книге: Pera M. The Ambiguous Frog. Princeton, NJ: Princeton University Press, 1992, p. 106.

46

Если не оговаривается особо, информация о научных работах, упомянутых в этом разделе, взята из книг Bresadola & Piccolino, Shocking Frogs; Pera, The Ambiguous Frog.

47

Ashcroft F. The Spark of Life. London: Penguin, 2013, p. 24.

48

Blondel, Animal Electricity, p. 190.

49

Bernardi, The controversy, p. 107.

50

Роберт Кемпенот дает понятное описание этого эксперимента: Campenot R. Animal Electricity. Cambridge, MA: Harvard University Press, 2016, p. 40.

51

Bernardi, The controversy, p. 103.

52

Там же, p. 107.

53

Aldini G. Essai théorique et expérimental sur le galvanisme, avec une série d’expériences. Paris: Fournier Fils, 1804. С работой можно ознакомиться в архивах библиотеки Смитсоновского института.

54

По некоторым источникам, на демонстрации присутствовала королева Шарлотта и ее сын принц Уэльский, а позднее Альдини, скорее всего, посвятил свою книгу младшему из принцев Августу Фредерику. Но на демонстрации, совершенно определенно, присутствовал как минимум один представитель королевской семьи.

55

Tarlow S., Lowman E. B. Harnessing the Power of the Criminal Corpse. London: Palgrave Macmillan, 2018, pp. 87–114.

56

McDonald H. Galvanising George Foster, 1803, The University of Melbourne, Archives and Special Collections.

57

Morus I. R. Frankenstein’s Children: Electricity, Exhibition, and Experiment in Early-Nineteenth-Century London. Princeton, NJ: Princeton University Press, 1998, p. 128.

58

Sleigh C. Life, Death and Galvanism. Studies in History and Philosophy of Science Part C, vol. 29, no. 2 (1998), pp. 219–48 (p. 223).

59

Осталось несколько описаний этого эксперимента, я в основном использовала информацию из книги Morus I. R. Shocking Bodies: Life, Death & Electricity in Victorian England. Stroud: The History Press, 2011, pp. 34–7. Другие источники – собственные отчеты Альдини и статья из Ньюгетского справочника от 22 января 1803 года (с. 3).

60

Sleigh, Life, Death and Galvanism, p. 224.

61

Parent A. Giovanni Aldini: From Animal Electricity to Human Brain Stimulation. Canadian Journal of Neurological Sciences, vol. 31, no. 4 (2004), pp. 576–84 (p. 578).

62

Blondel, Animal Electricity in Paris, pp. 194–5.

63

Aldini, Essai Théorique, p. vi.

64

Самое подробное описание этого способа лечения, сделанное Альдини, относится к случаю Луиджи Ланзарини.

65

Carpue J. An Introduction to Electricity and Galvanism; with Cases, Shewing Their Effects in the Cure of Diseases. London: A. Phillips, 1803, p. 86.

66

Blondel, Animal Electricity, p. 197.

67

Aldini J. [sic]. General Views on the Application of Galvanism to Medical Purposes, Principally in Cases of Suspended Animation. London: Royal Society, 1819, p. 37. При публикациях трудов за границей Альдини обычно изменял имя: в Англии он называл себя Джоном, а во Франции становился Жаном.

68

Мифическое существо из иудаистической мифологии, один из самых древних известных примеров вымышленного магического или алхимического конструкта из неорганической материи (обычно глины), полностью подчиненного воле своего создателя. Первый известный прообраз концепции робота. Стоит отметить, что к нежити в традиционном понимании это существо никакого отношения не имеет. – Прим. ред.

69

Parent, Giovanni Aldini, p. 581.

70

Вассалли-Эанди в августе 1802 года заявил, что Альдини “был вынужден признать, что не смог вызвать сокращения сердечной мышцы с помощью электромотора Вольты”.

71

Aldini, Essai Théorique, p. 195.

72

Giulio C. Report presented to the Class of the Exact Sciences of the Academy of Turin, 15th August 1802. The Philosophical Magazine, vol. 15, no. 57 (1803), pp. 39–41.

73

Morus I. The Victorians Bequeathed Us Their Idea of an Electric Future. Aeon, 8 August 2016.

74

Aldini, Essai Théorique, p. 143–4.

75

В этом разделе в основном использованы следующие источники информации: Bertucci P. Therapeutic Attractions: Early Applications of Electricity to the Art of Healing. In: Whitaker H. et al. (eds) Brain, Mind, and Medicine: Essays in Eighteenth-Century Neuroscience. Boston: Springer, 2007, pp. 271–83; Pera, The Ambiguous Frog; и некоторые неподражаемые детали из книги Ивана Риса Моруса “Дети Франкенштейна”.

76

Pera, The Ambiguous Frog, pp. 18–25.

77

Там же, p. 22.

78

Ashcroft, The Spark of Life, pp. 290–1.

79

Bertucci, Therapeutic Attractions, p. 281.

80

Расчет сделан 23 мая 2022 года с помощью CPI Inflation Calculator.

81

Bertucci, Therapeutic Attractions, p. 281.

82

Shepherd F. J. Medical Quacks and Quackeries. Popular Science Monthly, vol. 23 (June 1883), p. 152.

83

Morus, Shocking Bodies, p. 35.

84

Ochs S. A History of Nerve Functions: From Animal Spirits to Molecular Mechanisms. Cambridge: Cambridge University Press, 2004, p. 117.

85

Miller W. S. Elisha Perkins and His Metallic Tractors. Yale Journal of Biology and Medicine, vol. 8, no. 1 (1935), pp. 41–57 (p. 44).

86

Lord Byron. English Bards and Scotch Reviewers. Цитируется по работе: Miller, Elisha Perkins, p. 52.

87

Finger S. et al. Alexander von Humboldt: Galvanism, Animal Electricity, and Self-Experimentation Part 2: The Electric Eel, Animal Electricity, and Later Years. Journal of the History of the Neurosciences, vol. 22, no. 4 (2013), pp. 327–52 (p. 343).

88

Finger & Piccolino, The Shocking History of Electric Fishes, p. 11.

89

Finger et al., Alexander von Humboldt, p. 343.

90

Otis L. Müller’s Lab. Oxford: Oxford University Press, 2007, p. 11. См. также: Finger et al., Alexander von Humboldt, p. 345.

91

. “Большой астатический гальванометр Нобили” можно увидеть среди изображений виртуального музея Галилео Галилея (Museo Galileo, Nobili’s large astatic galvanometer).

92

Verkhratsky A., Parpura V. History of Electrophysiology and the Patch Clamp. In: Martina M., Taverna S. (eds) Methods in Molecular Biology. New York: Humana Press, 2014, pp. 1–19 (p. 7). Однако большинство подробностей об экспериментах Нобили и Маттеуччи взято из книги Отис “Лаборатория Мюллера”.

93

Cobb M. The Idea of the Brain: A History. London: Profile Books, 2020, p. 71.

94

Finger et al., Alexander von Humboldt, p. 347; Otis, Müller’s Lab, p. 90.

95

Письмо Эмиля Дюбуа-Реймона коллеге физиологу-экспериментатору Карлу Людвигу от 1849 года приведено на с. 347 книги: Finger et al., Alexander von Humboldt.

96

Finger & Piccolino, The Shocking History of Electric Fishes, p. 369.

97

Bresadola & Piccolino, Shocking Frogs, p. 21.

98

Finkelstein, Gabriel. Emil du Bois-Reymond vs Ludimar Hermann. Comptes rendus biologies, vol. 329, 5–6 (2006), pp. 340–7.

99

Электрическая природа нервного возбуждения была выяснена гораздо раньше. В 1902 году Бернштейн опубликовал первую теорию потенциала покоя, а в середине XX века появились работы Ходжкина и Хаксли, о которых много говорится в следующей главе. Иной вопрос, что только в конце XX века были раскрыты молекулярные механизмы работы ионных каналов (см. далее). – Прим. науч. ред.

100

Bresadola & Piccolino, Shocking Frogs, p. 13.

101

Впервые термин “электром” появился в печати в 2016 году в малоизвестной статье бельгийского биолога Арнольда Де Люфа, которая называлась “Самоорганизующийся «электром» клетки: биофизическая суть нематериального признака Жизни?” (De Loof A. The cell’s self-generated “electrome”: The biophysical essence of the immaterial dimension of Life? Communicative & Integrative Biology, vol. 9, 5 (2016), e1197446). Данное определение не вошло в широкий обиход. Но еще до публикации статьи другие исследователи, работавшие в области биоэлектричества, включая Майкла Левина и Мин Чжао, уже использовали это слово. В частности, Чжао рецензировал несколько работ, используя этот термин, “не давая ему [окончательного] определения и объяснения, поскольку его понимание продолжает эволюционировать”. Цель данной книги заключается в том, чтобы “приколоть термин булавкой”, как бабочку под стеклом.

102

Строго говоря, потенциал действия распространяет сигнал ВНУТРИ нейрона, охватывая все его отростки. Между нейронами, как и между нейронами и мышечными клетками, коммуникация в большинстве случаев остается химической. – Прим. науч. ред.

103

Valenstein E. The War of the Soups and the Sparks. New York: Columbia University Press, 2005, pp. 121–34.

104

Слово “ион” происходит от древнегреческого слова ἰόν, что означает “идущий”.

105

James F. Davy, Faraday, and Italian Science. Доклад на IX Национальном симпозиуме по истории и основанию химии (Modena, 25–27 October 2001), pp. 149–58.

106

Faraday M. Experimental Researches in Electricity, Vol. 1 [1832]. London: Richard and John Edward Taylor, 1849. См. веб-сайт The Project Gutenberg eBook.

107

Ringer S., Morshead E. A. The Influence on the Afferent Nerves of the Frog’s Leg from the Local Application of the Chlorides, Bromides, and Iodides of Potassium, Ammonium, and Sodium. Journal of Anatomy and Physiology 12 (1877), pp. 58–72.

108

Campenot, Animal Electricity, p. 114.

109

Несколько миллиметров – это все-таки редкость. Обычно нейрофизиологи имели дело с аксонами кальмаров толщиной 0,5–1 миллиметр, что тоже очень много. – Прим. науч. ред.

110

McCormick D. A. Membrane Potential and Action Potential. In: Squire L. et al. (eds) Fundamental Neuroscience. Oxford: Academic Press, 2013, pp. 93–116 (p. 93).

111

Это неверное объяснение. Дальше по тексту можно найти верное: основная причина существования потенциала покоя – разность концентраций калия (внутри клетки его гораздо больше, чем снаружи). В состоянии покоя мембрана возбудимой клетки проницаема для калия. Поэтому ионы калия свободно выходят из нее, перемещаясь туда, где их концентрация ниже. Возникающий калиевый ток и создает разность потенциалов с минусом внутри клетки и плюсом снаружи. – Прим. науч. ред.

112

Hodgkin A., Huxley A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, vol. 117, no. 4 (1952), pp. 500–44.

113

Ramachandran V. S. The Astonishing Francis Crick. Лекция памяти Фрэнсиса Крика, прочитанная в Центре философских основ науки в Нью-Дели, Индия, 17 октября 2004 года.

114

Schuetze S. The Discovery of the Action Potential. Trends in Neurosciences 6 (1983), pp. 164–8. См. также: Lombard J. Once upon a time the cell membranes: 175 years of cell boundary research. Biology Direct, vol. 9, no. 32, pp. 1–35; а также Finger & Piccolino, The Shocking History of Electric Fishes, p. 402.

115

Campenot, Animal Electricity, pp. 210–11.

116

Agnew W. et al. Purification of the Tetrodotoxin-Binding Component Associated with the Voltage-Sensitive Sodium Channel from Electrophorus Electricus Electroplax Membranes. PNAS, vol. 75, no. 6 (1978), pp. 2606–10.

117

Noda M. et al. Expression of Functional Sodium Channels from Cloned CDNA. Nature, vol. 322, no. 6082 (1986), pp. 826–8.

118

Brenowitz S. et al. Ion Channels: History, Diversity, and Impact. Cold Spring Harbor Protocols 7 (2017), pdb.top092288.

119

Родерик Маккиннон был удостоен Нобелевской премии по химии за исследования ионных каналов в 2003 году.

120

McCormick, Membrane Potential and Action Potential, p. 103.

121

Ashcroft, The Spark of Life, p. 69.

122

McCormick D. A. Membrane Potential and Action Potential. In: Byrne J. H., Roberts J. L. (eds) From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience. Amsterdam/Boston: Academic Press, 2nd edition, 2009, pp. 133–58 (p. 151).

123

Ashcroft, The Spark of Life, pp. 49, 87–9.

124

Barhanin J. et al. New scorpion toxins with a very high affinity for Na+ channels. Journal de Physiologie, vol. 79, no. 4 (1984), pp. 304–8.

125

Kullmann D. M. The Neuronal Channelopathies. Brain, vol. 125, no. 6 (2002), pp. 1177–95.

126

Fozzard H. Cardiac Sodium and Calcium Channels: A History of Excitatory Currents. Cardiovascular Research, vol. 55, no. 1 (2002), pp. 1–8.

127

Sherman H. G. et al. Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types. Biochimica et Biophysica Acta – Bioenergetics, 1860/8 (2019), pp. 628–39.

128

Lund E. Bioelectric Fields and Growth. Austin: University of Texas Press, 1947.

129

Prindle A. et al. Ion channels enable electrical communication in bacterial communities. Nature, vol. 527, no. 7576 (2015), pp. 59–63.

130

Brand A. et al. Hyphal Orientation of Candida albicans Is Regulated by a Calcium-Dependent Mechanism. Current Biology, vol. 17, no. 4 (2007), pp. 347–52.

131

Davies P. The Demon in the Machine. London: Allen Lane, 2019, p. 110.

132

Это все же преувеличение. Все современные гипотезы происхождения жизни уделяют большое внимание вопросу о происхождении мембран. См. книги: Никитин М. Происхождение жизни. М.: АНФ, 2016; Лейн Н. Вопрос жизни. М.: Corpus, 2018. – Прим. науч. ред.

133

Anderson P. A., Greenberg R. M. Phylogeny of ion channels: clues to structure and function. Comparative Biochemistry and Physiology Part B, vol. 129, no. 1 (2001), pp. 17–28.

134

Liebeskind B. J. et al. Convergence of ion channel genome content in early animal evolution. PNAS, vol. 112, no. 8 (2015), E846–51.

135

Besterman E., Creese R. Waller – pioneer of electrocardiography. British Heart Journal, vol. 42, no. 1 (1979), pp. 61–4 (p. 63).

136

Acierno L. Augustus Desire Waller. Clinical Cardiology, vol. 23, no. 4 (2000), pp. 307–9 (p. 308).

137

Harrington K. Heavy browed savants unbend. Royal Society blogs, 14 July 2016.

138

Waller A. D. A Demonstration on Man of Electromotive Changes accompanying the Heart’s Beat. The Journal of Physiology, vol. 8 (1887), pp. 229–34.

139

Campenot, Animal Electricity, p. 269.

140

Burchell H. A Centennial Note on Waller and the First Human Electrocardiogram. The American Journal of Cardiology, vol. 59, no. 9 (1987), pp. 979–83 (p. 979).

141

AlGhatrif M., Lindsay J. A Brief Review: History to Understand Fundamentals of Electrocardiography. Journal of Community Hospital Internal Medicine Perspectives, vol. 2, no. 1 (2012), p. 14383.

142

Ashcroft, The Spark of Life, p. 146.

143

Campenot, Animal Electricity, pp. 272–4.

144

Aquilina O. A brief history of cardiac pacing. Images in Paediatric Cardiology, vol. 8, no. 2 (2006), pp. 17–81 (Fig. 16).

145

Rowbottom M., Susskind C. Electricity and Medicine: History of Their Interaction. London: Macmillan, 1984, p. 248.

146

Rowbottom & Susskind, Electricity and Medicine, p. 249.

147

Там же.

148

Emery G. Nuclear pacemaker still energized after 34 years. Reuters, 19 December 2007.

149

Norman J. C. et al. Implantable nuclear-powered cardiac pacemakers. New England Journal of Medicine, vol. 283, no. 22 (1970), pp. 1203–6.

150

Roy O. Z., Wehnert R. W. Keeping the heart alive with a biological battery. Electronics, vol. 39, no. 6 (1966), pp. 105–7. См. также: Roy O. Z., Wehnert R. W. Improvements in biogalvanic energy sources. Med. & biol. Engng, vol. 12 (1974), pp. 50–6.

151

Greatbatch W. The Making of the Pacemaker: Celebrating a Lifesaving Invention. Amherst: Prometheus Books, 2000, p. 23.

152

Tashiro H. et al. Direct Neural Interface. In: Popovic M. B. (ed.) Biomechatronics. Oxford: Academic Press, 2019, pp. 139–74.

153

Greatbatch, The Making of the Pacemaker, p. 23.

154

Hamzelou J. $100 million project to make intelligence-boosting brain implant. New Scientist, 20 October 2016.

155

McKelvey C. The Neuroscientist Who’s Building a Better Memory for Humans. Wired, 1 December 2016.

156

Johnson B. The Urgency of Cognitive Improvement. Medium, 14 June 2017.

157

Строго говоря, это не так. В физиологии есть понятие “инотропное действие”, означающее влияние именно на силу сокращения сердечной мышцы (она регулируется через поступление кальция в мышечные клетки). Однако сердечная мышца либо сокращается целиком, либо нет, в этом смысле ее реакция действительно не бывает половинчатой. – Прим. науч. ред.

158

Campenot, Animal Electricity, pp. 110–1.

159

Здесь и далее автор путает понятия “нерв” и “нервное волокно”. В анатомии и физиологии нервным волокном называется отросток одного нейрона, а нервом – пучок нервных волокон. – Прим. науч. ред.

160

Finger S. Minds Behind the Brain. Oxford: Oxford University Press, 2005, pp. 243–7. См. также: Ashcroft, The Spark of Life, ch. 3.

161

Garson J. The Birth of Information in the Brain: Edgar Adrian and the Vacuum Tube. Science in Context, vol. 28, no. 1 (2015), pp. 31–52 (pp. 40–2).

162

Finger, Minds, p. 249.

163

Там же, p. 250.

164

Там же, p. 250.

165

Garson, The Birth, p. 46.

166

Finger, Minds, p. 250.

167

Adrian E. D. The Physical Background of Perception. Процитировано в: Cobb M. The Idea of the Brain: A History. London: Profile Books, 2020, p. 186.

168

Borck C. Recording the Brain at Work: The Visible, the Readable, and the Invisible in Electroencephalography. Journal of the History of the Neurosciences, vol. 17 (2008), pp. 367–79 (p. 371).

169

Millett D. Hans Berger: From Psychic Energy to the EEG. Perspectives in Biology and Medicine, vol. 44, no. 4 (2001), pp. 522–42 (p. 523).

170

Гинзберг, процитировано в: Millet, Hans Berger, p. 524.

171

Millet, Hans Berger, p. 537.

172

Cobb, The Idea of the Brain, p. 170.

173

Millet, Hans Berger, p. 539.

174

Borck, Recording, p. 369.

175

Там же, p. 368.

176

Borck C., Hentschel A. M. Brainwaves: A Cultural History of Electroencephalography. London: Routledge, 2018, p. 110.

177

Borck & Hentschel, Brainwaves, p. 109.

178

Там же, p. 115.

179

Collura T. History and Evolution of Electroencephalographic Instruments and Techniques. Journal of Clinical Neurophysiology, vol. 10, no. 4 (1993), pp. 476–504 (p. 498).

180

Marsh A. Meet the Roomba’s Ancestor: The Cybernetic Tortoise. IEEE Spectrum, 28 February 2020.

181

Cobb, The Idea of the Brain, p. 190.

182

Hodgkin A. Edgar Douglas Adrian, Baron Adrian of Cambridge. 30 November 1889 – 4 August 1977. Biographical Memoirs of Fellows of the Royal Society, vol. 25 (1979), pp. 1–73 (p. 19).

183

Tatu L. Edgar Adrian (1889–1977) and Shell Shock Electrotherapy: A Forgotten History? European Neurology, vol. 79, nos. 1–2 (2018), pp. 106–7.

184

Underwood E. A Sense of Self. Science, vol. 372, no. 6547 (2021), pp. 1142–5 (pp. 1142–3).

185

Olds J. Pleasure Centers in the Brain. Scientific American, vol. 195 (1956), pp. 105–17; Olds J. Self-Stimulation of the Brain. Science, vol. 127 (1958), pp. 315–24.

186

Moan C., Heath R. G. Septal Stimulation for the Initiation of Heterosexual Behavior in a Homosexual Male. In: Wolpe J., Reyna L. J. (eds) Behavior Therapy in Psychiatric Practice. New York: Pergamon Press, 1976, pp. 109–16.

187

Giordano J. (ed). Neurotechnology. Boca Raton: CRC Press, 2012, p. 151.

188

Frank L. Maverick or monster? The controversial pioneer of brain zapping. New Scientist, 27 March 2018.

189

Blackwell B. José Manuel Rodriguez Delgado. Neuropsychopharmacology, vol. 37, no. 13 (2012), pp. 2883–4.

190

Эта фотография воспроизводилась многократно, в частности, ее можно увидеть в статье: Marzullo T. The Missing Manuscript of Dr. José Delgado’s Radio Controlled Bulls. JUNE, vol. 15, no. 2 (2017), pp. 29–35.

191

Osmundsen J. Matador with a radio stops wired bull: modified behavior in animals subject of brain study. New York Times, 17 May 1965.

192

Horgan J. Tribute to José Delgado, Legendary and Slightly Scary Pioneer of Mind Control. Scientific American, 25 September 2017.

193

МФТП – сокращенное название нейротоксина 1-метил-4-фенил-1,2,3,6-тетрагидропиридина.

194

Речь идет не об открытии черной субстанции как таковой (она была описана анатомами еще в XVIII веке), а о выяснении ее функционального значения. – Прим. науч. ред.

195

Gardner J. A History of Deep Brain Stimulation: Technological Innovation and the Role of Clinical Assessment Tools. Social Studies of Science, vol. 43, no. 5 (2013), pp. 707–28 (p. 710).

196

Schwalb J. M., Hamani C. The History and Future of Deep Brain Stimulation. Neurotherapeutics, vol. 5, no. 1 (2008), pp. 3–13.

197

Gardner, A History, p. 719.

198

Lozano A. M. et al. Deep brain stimulation: current challenges and future directions. Nature Reviews Neurology, vol. 15 (2019), pp. 148–60.

199

Nuttin B. et al. Electrical Stimulation in Anterior Limbs of Internal Capsules in Patients with Obsessive-Compulsive Disorder. The Lancet, vol. 354, no. 9189 (1999), p. 1526.

200

Ridgway A. Deep brain stimulation: A wonder treatment pushed too far? New Scientist, 21 October 2015.

201

Sturm V. et al. DBS in the basolateral amygdala improves symptoms of autism and related self-injurious behavior: a case report and hypothesis on the pathogenesis of the disorder. Frontiers in Neuroscience, vol. 6, no. 341 (2013).

202

Formolo D. A. et al. Deep Brain Stimulation for Obesity: A Review and Future Directions. Frontiers in Neuroscience, vol. 13, no. 323 (2019); Wu H. et al. Deep-brain stimulation for anorexia nervosa. World Neurosurgery, vol. 80 (2013).

203

Baguley D. et al. Tinnitus. The Lancet, vol. 382, no. 9904 (2013), pp. 1600–7; Luigjes J. et al. Deep brain stimulation in addiction: a review of potential brain targets. Molecular Psychiatry, vol. 17 (2012), pp. 572–83; Fuss J. et al. Deep brain stimulation to reduce sexual drive. Journal of Psychiatry and Neuroscience, vol. 40, no. 6 (2015), pp. 429–31.

204

Совещание Общества нейробиологов, Сан-Диего, 2018. Мейберг также говорила об этом в Исследовательском фонде Brain & Behaviour: Deep Brain Stimulation for Treatment-Resistant Depression: A Progress Report, Brain & Behaviour Research Foundation YouTube channel, 16 October 2019.

205

Mayberg H. et al. Deep Brain Stimulation for Treatment-Resistant Depression. Neuron, vol. 45, no. 5 (2005), pp. 651–60.

206

Dobbs D. Why Deep-Brain Stimulation for Depression Didn’t Pass Clinical Trials. The Atlantic, 17 April 2018.

207

. BROADEN Trial of DBS for Treatment-Resistant Depression No Better than Sham. The Neurocritic blog, 10 October 2017.

208

. The Remote Control Brain. Invisibilia, NPR, первая трансляция 29 марта 2019 года.

209

Cyron D. Mental Side Effects of Deep Brain Stimulation (DBS) for Movement Disorders: The Futility of Denial. Frontiers in Integrative Neuroscience, vol. 10 (2016), pp. 1–4.

210

Mantione M. et al. A Case of Musical Preference for Johnny Cash Following Deep Brain Stimulation of the Nucleus Accumbens. Frontiers in Behavioral Neuroscience, vol. 8, no. 152 (2014).

211

Florin E. et al. Subthalamic Stimulation Modulates Self-Estimation of Patients with Parkinson’s Disease and Induces Risk-Seeking Behaviour. Brain, vol. 136, no. 11 (2013), pp. 3271–81.

212

Shen H. H. Can Deep Brain Stimulation Find Success beyond Parkinson’s Disease? PNAS, vol. 116, no. 11 (2019), pp. 4764–6.

213

Müller E. J., Robinson P. A. Quantitative Theory of Deep Brain Stimulation of the Subthalamic Nucleus for the Suppression of Pathological Rhythms in Parkinson’s Disease. PLOS Computational Biology, vol. 14, no. 5 (2018), e1006217. См. также: Kisely S. et al. A Systematic Review and Meta-Analysis of Deep Brain Stimulation for Depression. Depression and Anxiety, vol. 35, no. 5 (2018), pp. 468–80.

214

Crick F. The Astonishing Hypothesis: The Scientific Search for the Soul. New York: Scribner; London: Maxwell Macmillan International, 1994, p. 10, 182-4.

215

Там же, p. 3. Подробнее о сознании превосходно рассказано в главе 15 книги Мэттью Кобба “Мозг. Биография”.

216

Gerstner W. et al. Neural Codes: Firing Rates and Beyond. PNAS, vol. 94, no. 24 (1997), pp. 12740–1.

217

Buzsöki G. Rhythms of the Brain. New York: Oxford University Press, 2011.

218

Kellis S. et al. Decoding Spoken Words using Local Field Potentials Recorded from the Cortical Surface. Journal of Neural Engineering, vol. 7, no. 5 (2010), p. 056007.

219

Martin R. Mind Control. Wired, 1 March 2005.

220

Там же.

221

Bouton C. Reconnecting a paralyzed man’s brain to his body through technology. TEDx Talks YouTube channel, 25 November 2014.

222

TED (Technology, Entertainment, Design – технологии, развлечения, дизайн) – частный некоммерческий фонд, проводящий ежегодные конференции; их записи доступны в интернете.

223

Bouton C. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature, vol. 533 (2016), pp. 247–50.

224

Geddes L. First paralysed person to be “reanimated” offers neuroscience insights. Nature, 13 April 2016.

225

Серия видеоигр, условно симулирующих игру на гитаре в составе группы и славившихся некогда высокой требовательностью к реакции игрока. – Прим. ред.

226

Geddes L. Pioneering brain implant restores paralysed man’s sense of touch. Nature, 13 October 2016.

227

Flesher S. N. et al. Intracortical microstimulation of human somatosensory cortex. Science Translational Medicine, vol. 8, no. 361 (2016).

228

Berger T. W. et al. A cortical neural prosthesis for restoring and enhancing memory. Journal of Neural Engineering, vol. 8, no. 4 (2011).

229

Frank L. How to Make an Implant That Improves the Brain. MIT Technology Review, 9 May 2013.

230

Hampson R. E. et al. Facilitation and Restoration of Cognitive Function in Primate Prefrontal Cortex by a Neuro-prosthesis That utilizes Minicolumn-Specific Neural Firing. Journal of Neural Engineering, vol. 9, no. 5 (2012), p. 056012.

231

Strickland E. DARPA Project Starts Building Human Memory Prosthetics. IEEE Spectrum, 27 August 2014.

232

McKelvey, The Neuroscientist, 2016.

233

Ganzer P. et al. Restoring the Sense of Touch using a Sensorimotor Demultiplexing Neural Interface. Cell, vol. 181, no. 4 (2020), pp. 763–73.

234

. Reconnecting the Brain After Paralysis using Machine Learning. Medium, 21 September 2020.

235

Bryan C., Rios I. (eds) Brain-machine Interfaces: Uses and Developments. New York: Novinka, 2018.

236

Боутон работает над решением проблемы “доставки”. Bouton C. Brain Implants and Wearables Let Paralyzed People Move Again. IEEE Spectrum, 26 January 2021.

237

Engber D. The Neurologist Who Hacked His Brain – And Almost Lost His Mind. Wired, 26 January 2016.

238

Jun J. J. et al. Fully Integrated Silicon Probes for High-Density Recording of Neural Activity. Nature, vol. 551, no. 7679 (2017), pp. 232–6.

239

Strickland E. 4 Steps to Turn “Neural Dust” Into a Medical Reality. IEEE Spectrum, 21 October 2016.

240

Lee J. et al. Neural Recording and Stimulation using Wireless Networks of Microimplants. Nature Electronics, vol. 4, no. 8 (2021), pp. 604–14.

241

. Brain chips will become “more common than pacemakers”, says investor, as startup raises $10m. The Stack, 19 May 2021.

242

Ghose C. Ohio State researcher says Battelle brain-computer interface for paralysis could save $7B in annual home-care costs. Columbus Business First, 10 October 2019.

243

Regalado A. Thought Experiment. MIT Technology Review, 17 June 2014.

244

Bowen C. Nerve Repair Innovation Gives Man Hope. Spinal Cord Injury Information Pages, 4 July 2007.

245

Wallack T. Sense of urgency for spinal device. Boston Globe, 18 September 2007.

246

Из телефонного разговора с Деброй Бонерт, проработавшей в лаборатории Ричарда Боргенса с 1986 по 2019 год.

247

У гидры, как и у всех стрекающих, есть нервная система, состоящая из типичных нейронов. В этом смысле “организмом без мозга” ее назвать нельзя. – Прим. науч. ред.

248

Jaffe L. F., Poo M. Neurites grow faster towards the cathode than the anode in a steady field. Journal of Experimental Zoology 209 (1979), pp. 115–28.

249

Ingvar S. Reaction of cells to the galvanic current in tissue cultures. Experimental Biology and Medicine, vol. 17, issue 8 (1920).

250

Bishop C. The Briks of Denton and Dallas TX. Garage Hangover, 18 October 2007.

251

Pithoud K. Ex-rocker turns to research. The Purdue Exponent, 17 September 2003.

252

Bishop, The Briks, 2007.

253

Bishop, The Briks, комментарий Джонни Юнга 25 января 2019 года в 11:33 утра.

254

Kolsti N. This is… Spinal Research. The North Texan Online, 2001.

255

Hinkle L. et al. The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. The Journal of Physiology, 314 (1981), pp. 121–35.

256

McCaig C. Epithelial Physiology, Ovarian Follicles, Nerve Growth Cones, Vibrating Probes, Wound Healing, and Cluster Headache: Staggering Steps on a Route Map to Bioelectricity. Bioelectricity, vol. 2, no. 4 (2020), pp. 411–7 (p. 412).

257

Borgens R. et al. Bioelectricity and Regeneration. BioScience, vol. 29, no. 8 (1979), pp. 468–74.

258

Borgens R. et al. Large and persistent electrical currents enter the transected lamprey spinal cord. PNAS, vol. 77, no. 2 (1980), pp. 1209–13.

259

Borgens R. B. et al. Behavioral Recovery Induced by Applied Electric Fields After Spinal Cord Hemisection in Guinea Pig. Science, vol. 238, no. 4825 (1987), pp. 366–9.

260

Подразумевается американский футбол. – Прим. ред.

261

Kleitman N. Under one roof: the Miami Project to Cure Paralysis model for spinal cord injury research. Neuroscientist, vol. 7, no. 3 (2001), pp. 192–201.

262

Borgens R. B. et al. Effects of Applied Electric Fields on Clinical Cases of Complete Paraplegia in Dogs. Restorative Neurology and Neuroscience, vol. 5, no.5–6 (1993), pp. 305–22.

263

. Electrical stimulation helps dogs with spinal injuries. Purdue News, 21 July 1993.

264

Orr R. Research On Dogs’ Spinal Cord Injuries May Lead to Help For Humans. Chicago Tribune, 20 November 1995.

265

. Purdue/IU partnership in paralysis research. Purdue News Service, 28 July 1999.

266

. Human Trial for Spinal Injury Treatment Launched by Purdue, IU. Purdue News Service, December 2000.

267

Callahan R. Two universities launch clinical trial for paralysis patients. Middletown Press, 12 December 2000.

268

Выдержка из новостной статьи в журнале Школы ветеринарной медицины Пердью: Tales from the Vet Clinic: Yukon overcomes his chilling ordeal! Synapses, Fall 2020.

269

. Device to Aid Paralysis Victims to Get Test. Los Angeles Times, 13 December 2000.

270

Bowen C. Nerve Repair Innovation Gives Man Hope. Indianapolis Star, 4 July 2007.

271

Ravn K. In spinal research, pets lead the way. Los Angeles Times, 9 April 2007.

272

. Implanted device offers new sensation. The Engineer, 11 January 2005.

273

. Cyberkinetics to acquire Andara Life Science for $4.5M. Boston Business Journal, 13 February 2006.

274

Пресс-релиз компании Cyberkinetics от 28 сентября 2006 года.

275

Robinson K., Cormie P. Electric Field Effects on Human Spinal Injury: Is There a Basis in the In Vitro Studies? Developmental Neurobiology, vol. 68, no. 2 (2008), pp. 274–80.

276

Wallack, Sense of urgency, 2007.

277

Shapiro S. A Review of Oscillating Field Stimulation to Treat Human Spinal Cord Injury. World Neurosurgery, vol. 81, nos. 5–6 (2014), pp. 830–5.

278

Bowman L. Study on dogs yields hope in human paralysis treatment. Seattle Post-Intelligencer, 3 August 2004.

279

Li J. Oscillating Field Electrical Stimulator (OFS) for Regeneration of the Spinal Cord. Create the Future Design Contest, 2017.

280

Li J. Weak Direct Current (DC) Electric Fields as a Therapy for Spinal Cord Injuries: Review and Advancement of the Oscillating Field Stimulator (OFS). Neurosurgical Review, vol. 42, no. 4 (2019), pp. 825–34.

281

Willyard C. How a Revolutionary Technique Got People with Spinal-Cord Injuries Back on Their Feet. Nature, vol. 572, no. 7767 (2019), pp. 20–5.

282

Даже такие химические и физические факторы, как контактное ингибирование и популяционное давление.

283

McCaig C. D. et al. Controlling Cell Behavior Electrically: Current Views and Future Potential. Physiological Reviews, vol. 85, no. 3 (2005), pp. 943–78.

284

В статье Controlling Cell Behavior Electrically они писали следующее: “Электрические поля прямого электрического тока присутствуют во всех развивающихся и регенерирующих тканях животных, однако мало что известно об их существовании и возможном влиянии на восстановление тканей”.

285

Reid B. et al. Wound Healing in Rat Cornea: The Role of Electric Currents. The FASEB Journal, vol. 19, no. 3 (2005), pp. 379–86.

286

Hagins W. A. et al. Dark Current and Photocurrent in Retinal Rods. Biophysical Journal, vol. 10, no. 5 (1970), pp. 380–412.

287

Song B. et al. Electrical Cues Regulate the Orientation and Frequency of Cell Division and the Rate of Wound Healing in Vivo. PNAS, vol. 99, no. 21 (2002), pp. 13577–82.

288

Leppik L. et al. Electrical Stimulation in Bone Tissue Engineering Treatments. European Journal of Trauma and Emergency Surgery, vol. 46, no. 2 (2020), pp. 231–44.

289

Zhao M. et al. Electrical Signals Control Wound Healing through Phosphatidylinositol-3-OH Kinase- and PTEN. Nature, vol. 442, no. 7101 (2006), pp. 457–60.

290

См. отчет Национального института здоровья: A Clinical Trial of Dermacorder for Detecting Malignant Skin Lesions, 17 November 2009.

291

Nuccitelli R. et al. The electric field near human skin wounds declines with age and provides a noninvasive indicator of wound healing. Wound Repair and Regeneration, vol. 19, no. 5 (2011), pp. 645–55.

292

Stephens T. Bioelectronic device achieves unprecedented control of cell membrane voltage. UC Santa Cruz News Center, 24 September 2020.

293

Ershad F. et al. Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment. Nature Communications, vol. 11, no. 3823 (2020).

294

Levin M. What Bodies Think About: Bioelectric Computation Beyond the Nervous System as Inspiration for New Machine Learning Platforms. The Thirty-second Annual Conference on Neural Information Processing Systems (NIPS). Palais des Congrès de Montréal, Montréal, Canada. 4 December 2018. См. также: Pullar C. E. (ed.) The Physiology of Bioelectricity in Development, Tissue Regeneration and Cancer. Boca Raton: CRC Press, 2011, p. 69.

295

Аллюзия на “кота Шредингера” – мысленный эксперимент, предложенный одним из создателей квантовой механики Эрвином Шредингером для обсуждения физического смысла волновой функции.

296

Sampogna G. et al. Regenerative Medicine: Historical Roots and Potential Strategies in Modern Medicine. Journal of Microscopy and Ultrastructure, vol. 3, no. 3 (2015), pp. 101–7 (p. 101).

297

Power C., Rasko J. E. J. The stem cell revolution isn’t what you think it is. New Scientist, 29 September 2021.

298

Burr H. S. et al. A Vacuum Tube Micro-Voltmeter for the Measurement of Bio-Electric Phenomena. The Yale Journal of Biology and Medicine, vol. 9, no. 1 (1936), pp. 65–76. Статью и изображение также можно увидеть на веб-сайте журнала.

299

Burr H. S. Blueprint for Immortality: The Electric Patterns of Life. Essex: Neville Spearman Publishers, 1972, p. 48.

300

Burr H. S. et al. Bio-Electric Correlates of Human Ovulation. The Yale Journal of Biology and Medicine, vol. 10, no. 2 (1937), pp. 155–60.

301

Burr H. S. et al. Detection of Ovulation in the Intact Rabbit. Proceedings of the Society for Experimental Biology and Medicine, vol. 33, no. 1 (1935), pp. 109–11.

302

Burr, Blueprint, p. 50.

303

Хирургическая операция, подразумевающая рассечение передней стенки живота пациента. – Прим. ред.

304

Там же, p. 51.

305

Langman L., Burr H. S. Electrometric Timing of Human Ovulation. American Journal of Obstetrics and Gynecology, vol. 44, no. 2 (1942), pp. 223–9.

306

. Medicine: Yale Proof. Time, 11 October 1937.

307

Гридлик (англ. grid leak – “сетевая утечка”) – цепь из параллельно подключенных конденсатора и резистора преимущественно в старых ламповых схемах. Используется для рассеивания избыточного тока и стабилизации сети. – Прим. ред.

308

Burr et al., Bio-Electric Correlates, см. диаграмму на с. 156.

309

Altmann M. Interrelations of the Sex Cycle and the Behavior of the Sow. Journal of Comparative Psychology, vol. 31, no. 3 (1941), pp. 481–98.

310

. Dr. John Rock (1890–1984). PBS American Experience.

311

Snodgrass J. et al. The Validity Of “Ovulation Potentials”. American Journal of Physiology – Legacy Content, vol. 140, no. 3 (1943), pp. 394–415.

312

Su H.-W. et al. Detection of Ovulation, a Review of Currently Available Methods. Bioengineering & Translational Medicine, vol. 2, no. 3 (2017), pp. 238–46.

313

Herzberg M. et al. The Cyclic Variation of Sodium Chloride Content in the Mucus of the Cervix uteri. Fertility and Sterility, vol. 15, no. 6 (1964), pp. 684–94.

314

Burr H. S., Musselman L. K. Bio-Electric Phenomena Associated with Menstruation. The Yale Journal of Biology and Medicine, vol. 9, no. 2 (1936), pp. 155–8.

315

Tosti E. Electrical Events during Gamete Maturation and Fertilization in Animals and Humans. Human Reproduction Update, vol. 10, no. 1 (2004), pp. 53–65.

316

Van Blerkom J. Domains of High-Polarized and Low-Polarized Mitochondria May Occur in Mouse and Human Oocytes and Early Embryos. Human Reproduction, vol. 17, no. 2 (2002), pp. 393–406.

317

Trebichalská Z., Holubcová Z. Perfect Date – the Review of Current Research into Molecular Bases of Mammalian Fertilization. Journal of Assisted Reproduction and Genetics, vol. 37, no. 2 (2020), pp. 243–56.

318

Stein P. et al. Modulators of Calcium Signalling at Fertilization. Open Biology, vol. 10, no. 7 (2020), p. 200118.

319

Campbell K. H. et al. Sheep cloned by nuclear transfer from a cultured cell line. Nature, vol. 380, 6569 (1996), pp. 64–6 (p. 64).

320

Zimmer C. Growing Left, Growing Right. The New York Times, 3 June 2013.

321

У некоторых людей возникали респираторные и репродуктивные проблемы.

322

Nuccitelli R. Ionic Currents in Development. New York: International Society of Developmental Biologists, 1986.

323

Tosti E. et al. Ion currents in embryo development. Birth Defects Research Part C, 108 (2016), pp. 6–18.

324

С 2010 года Институт Форсита располагается в Кембридже. – Прим. ред.

325

Adams D. S., Levin M. General Principles for Measuring Resting Membrane Potential and Ion Concentration using Fluorescent Bioelectricity Reporters. Cold Spring Harbor Protocols, 2012/4 (2012).

326

Cone C., Cone C. M. Induction of Mitosis in Mature Neurons in Central Nervous System by Sustained Depolarization. Science, vol. 192, no. 4235 (1976), pp. 155–8.

327

Knight K. R., Collins P. The Face of a Frog: Time-lapse Video Reveals Never-Before-Seen Bioelectric Pattern. Tufts university press release, 18 July 2011.

328

Vandenberg L. N. et al. V-ATPase-Dependent Ectodermal Voltage and Ph Regionalization Are Required for Craniofacial Morphogenesis. Developmental Dynamics, vol. 240, no. 8 (2011), pp. 1889–904.

329

Adams D. S. et al. Bioelectric Signalling via Potassium Channels: A Mechanism for Craniofacial Dysmorphogenesis in KCNJ2-Associated Andersen-Tawil Syndrome: K+-Channels in Craniofacial Development. The Journal of Physiology, vol. 594, no. 12 (2016), pp. 3245–70.

330

Moody W. J. et al. Development of ion channels in early embryos. Journal of Neurobiology 22 (1991), pp. 674–84.

331

Rovner S. Recipes for Limb Renewal. Chemical & Engineering News, 2 August 2010.

332

Pai V. P. et al. Transmembrane Voltage Potential Controls Embryonic Eye Patterning in Xenopus Laevis. Development, vol. 139, no. 2 (2012), pp. 313–23.

333

Malinowski P. T. et al. Mechanics dictate where and how freshwater planarians fission. PNAS, vol. 114, no. 41 (2017), pp. 10888–93.

334

Hall D. Brittle Star Splits. Smithsonian Ocean, January 2020.

335

По-видимому, речь идет о фразе: “Можно все время дурачить некоторых, можно некоторое время дурачить всех, но нельзя все время дурачить всех”.

336

Levin M. Reading and Writing the Morphogenetic Code. Foundational White Paper of the Allen Discovery Center at Tufts university, p. 2.

337

Kolata G. Surgery on Fetuses Reveals They Heal Without Scars. The New York Times, 16 August 1988.

338

Barbuzano J. Understanding How the Intestine Replaces and Repairs Itself. Harvard Gazette, 14 July 2017.

339

Vanable J. A history of bioelectricity in development and regeneration. In: Dinsmore C. E. (ed.) A History of Regeneration Research. New York: Cambridge University Press, 1991, pp. 151–78 (p. 163).

340

Sisken B. Enhancement of Nerve Regeneration by Selected Electromagnetic Signals. In: Markov M. (ed.) Dosimetry in Bioelectromagnetics. Boca Raton: CRC Press, 2017, pp. 383–98.

341

Tseng A.-S. et al. Induction of Vertebrate Regeneration by a Transient Sodium Current. Journal of Neuroscience, vol. 30, no. 39 (2010), pp. 13192–200.

342

Tseng A., Levin M. Cracking the bioelectric code: Probing endogenous ionic controls of pattern formation. Communicative & Integrative Biology, vol. 6,1 (2013), e22595.

343

Речь, вероятно, идет о вымышленной субстанции под названием “бакта”, которая способна практически бесследно заживлять крайне тяжелые повреждения во вселенной “Звездных войн”. – Прим. ред.

344

Eskova A. et al. Gain-of-Function Mutations of Mau/DrAqp3a Influence Zebrafish Pigment Pattern Formation through the Tissue Environment. Development, 144 (2017).

345

Dlouhy B. J. et al. Autograft-Derived Spinal Cord Mass Following Olfactory Mucosal Cell Transplantation in a Spinal Cord Injury Patient: Case Report. Journal of Neurosurgery: Spine, vol. 21, no. 4 (2014), pp. 618–22.

346

Jabr F. In the Flesh: The Embedded Dangers of untested Stem Cell Cosmetics. Scientific American, 17 December 2012.

347

Aldhous P. An Experiment That Blinded Three Women unearths the Murky World of Stem Cell Clinics. BuzzFeed News, 21 March 2017.

348

Coghlan A. How “stem cell” clinics became a Wild West for dodgy treatments. New Scientist, 17 January 2018.

349

Feng J. F. et al. Electrical Guidance of Human Stem Cells in the Rat Brain. Stem Cell Reports, vol. 9, no. 1 (2017), pp. 177–89.

350

Rose S. M., Wallingford H. M. Transformation of renal tumors of frogs to normal tissues in regenerating limbs of salamanders. Science, vol. 107, no. 2784 (1948), p. 457.

351

Oviedo N. J., Beane W. S. Regeneration: The origin of cancer or a possible cure? Seminars in Cell & Developmental Biology, vol. 20, no. 5 (2009), pp. 557–64.

352

Fatima I. et al. Skin Aging in Long-Lived Naked Mole-Rats is Accompanied by Increased Expression of Longevity-Associated and Tumor Suppressor Genes. Journal of Investigative Dermatology, vol. 142, no. 11 (2022), pp. 2853–63.e4.

353

Ruby J. G. et al. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. eLife 7: e31157 (2018).

354

Burr H. S. Blueprint for Immortality: The Electric Patterns of Life. Essex: Neville Spearman Publishers, 1972, p. 53.

355

Там же, p. 54.

356

Langman L., Burr H. S. Electrometric Studies in Women with Malignancy of Cervix uteri. Science, vol. 105, no. 2721 (1947), pp. 209–10.

357

Langman L., Burr H. S. A technique to aid in the detection of malignancy of the female genital tract. Journal of the American Journal of Obstetrics and Gynecology, vol. 57, issue 2 (1949), pp. 274–81.

358

Langman & Burr, Electrometric, p. 210.

359

Stratton M. R. The cancer genome. Nature, vol. 458, 7239 (2009), pp. 719–24.

360

Nordenström B. Biologically closed electric circuits: Activation of vascular-interstitial closed electric circuits for treatment of inoperable cancers. Journal of Bioelectricity 3 (1984), pp. 137–53.

361

Nordenström B. Biologically Closed Electric Circuits: Clinical, Experimental, and Theoretical Evidence for an Additional Circulatory System. Stockholm: Nordic Medical Publications, 1983.

362

Там же.

363

Там же.

364

Parachini A. Cancer-Treatment Theory an Enigma to Scientific World. Los Angeles Times, 30 September 1986.

365

Там же.

366

Nordenström, Biologically closed.

367

Parachini, Cancer-Treatment, 1986.

368

Nilsson E. et al. Electrochemical treatment of tumours. Bioelectrochemistry, vol. 51, no. 1 (2000), pp. 1–11.

369

Все статистические данные взяты из статьи: Proceedings of the International Association for Biologically Closed Electric Circuits. European Journal of Surgery, 1994, Supplement 574, pp. 7–23.

370

. Activation of BCEC-channels for Electrochemical Therapy (ECT) of Cancer. Proceedings of the IABC International Association for Biologically-Closed Electric Circuits (BCEC) in Medicine and Biology. Stockholm, September 12–15, 1993 (1994), pp. 25–9.

371

Nordenström B. 20/20. ABC News, первый выпуск 21 октября 1988 года.

372

Moss R. W. Bjorn E. W. Nordenström, MD. Townsend Letter, The Examiner of Alternative Medicine 285 (2007), p. 156.

373

Lois C., Alvarez-Buylla A. Long-distance neuronal migration in the adult mammalian brain. Science 264 (1994), pp. 1145–8.

374

Grimes J. A. et al. Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: contribution to invasiveness in vitro. FEBS Letters 369 (1995), pp. 290–4.

375

См., например: Pullar C. E. (ed.) The Physiology of Bioelectricity in Development, Tissue Regeneration and Cancer. Boca Raton: CRC Press, 2011, p. 271.

376

Arcangeli A., Becchetti A. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters. Pharmaceuticals, vol. 3, no. 4 (2010), pp. 1202–24.

377

Bianchi L. et al. hERG Encodes a K+ Current Highly Conserved in Tumors of Different Histogenesis: A Selective Advantage for Cancer Cells? Cancer Research, vol. 58, no. 4 (1998), pp. 815–22.

378

Kunzelmann, 2005; Fiske et al., 2006; Stuhmer et al., 2006; Prevarskaya et al., 2010; Becchetti, 2011; Brackenbury, 2012. In: Yang M., Brackenbury W. Membrane potential and cancer progression. Frontiers in Physiology, vol. 4, 185 (2013).

379

Santos R. et al. A comprehensive map of molecular drug targets. Nature Reviews Drug Discovery, vol. 16, no. 1 (2017), pp. 19–34.

380

McKie R. For 30 years I’ve been obsessed by why children get leukaemia. Now we have an answer. The Guardian, 30 December 2018.

381

Сплайсинг – биохимический процесс “перетасовки” нуклеотидных последовательностей в рамках процессинга РНК. В данном случае, видимо, подразумевается сплайсинговая природа генетических вариаций ионных каналов. – Прим. ред.

382

Djamgoz M. et al. In Vivo Evidence for Voltage-Gated Sodium Channel Expression in Carcinomas and Potentiation of Metastasis. Cancers, vol. 11, no. 11 (2019), p. 1675.

383

Leanza L. et al. Pharmacological targeting of ion channels for cancer therapy: In vivo evidences. Biochimica et Biophysica Acta – Molecular Cell Research, vol. 1863, no. 6 (2016), pp. 1385–97.

384

В 2019 году в нескольких исследовательских центрах Китая были проведены доклинические испытания антител, активных против мышиного варианта опухоли, исследованного Джамгозом. По заявлениям ученых, антитела препятствовали метастазированию. Gao R. et al. Nav1.5-E3 antibody inhibits cancer progression. Translational Cancer Research, vol. 8, no. 1 (2019), pp. 44–50.

385

Lang F., Stournaras C. Ion channels in cancer: future perspectives and clinical potential. Philosophical Transactions of the Royal Society of London, Series B, vol. 369, 1638 (2014), 20130108.

386

Интервью с профессором Мустафой Джамгозом. External Speaker Series presentation. Metrion BioSciences, Cambridge 2018.

387

. The Bioelectricity Revolution: A Discussion Among the Founding Associate Editors. Bioelectricity, vol. 1, no. 1 (2019), pp. 8–15.

388

Greaves M. Nothing in cancer makes sense except… BMC Biology, vol. 16, no. 22 (2018).

389

Wilson C. The secret to killing cancer may lie in its deadly power to evolve. New Scientist, 4 March 2020.

390

Hope T., Iles S. Technology review: The use of electrical impedance scanning in the detection of breast cancer. Breast Cancer Research, vol. 6, no. 69 (2004), pp. 69–74.

391

Wilke L. et al. Repeat surgery after breast conservation for the treatment of stage 0 to II breast carcinoma: a report from the National Cancer Data Base, 2004–2010. JAMA Surgery, vol. 149, no. 12 (2014), pp. 1296–305.

392

Dixon J. M. et al. Intra-operative assessment of excised breast tumour margins using ClearEdge imaging device. European Journal of Surgical Oncology 42 (2016), pp. 1834–40.

393

Djamgoz M. In vivo evidence for expression of voltage-gated sodium channels in cancer and potentiation of metastasis. Sophion Bioscience YouTube channel, 18 July 2019. Тема, относящаяся к нашей книге, обсуждается примерно через 16 минут от начала записи.

394

Dokken K. et al. Sodium Channel Blocker Toxicity. StatPearls [Internet]. Treasure Island, FL: StatPearls Publishing, 2022.

395

Reddy J. P. et al. Antiepileptic drug use improves overall survival in breast cancer patients with brain metastases in the setting of whole brain radiotherapy. Radiotherapy and Oncology, vol. 117, no. 2 (2015), pp. 308–14.

396

Takada M. et al. Inverse Association between Sodium Channel-Blocking Antiepileptic Drug use and Cancer: Data Mining of Spontaneous Reporting and Claims Databases. International Journal of Medical Sciences, vol. 13, no. 1 (2016), pp. 48–59.

397

Интервью с профессором Мустафой Джамгозом. External Speaker Series presentation, Metrion BioSciences, Cambridge 2018.

398

Quail D. F., Joyce J. A. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, vol. 19, no. 11 (2013), pp. 1423–37.

399

Zhu K. et al. Electric Fields at Breast Cancer and Cancer Cell Collective Galvanotaxis. Scientific Reports, vol. 10, no. 1 (2020), 8712.

400

Wapner J. A New Theory on Cancer: What We Know About How It Starts Could All Be Wrong. Newsweek, 17 July 2017; см. также: Davies P. A new theory of cancer. The Monthly, November 2018.

401

Silver B., Nelson C. The Bioelectric Code: Reprogramming Cancer and Aging from the Interface of Mechanical and Chemical Microenvironments. Frontiers in Cell and Developmental Biology, vol. 6, no. 21 (2018).

402

Lobikin M. et al. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo. Physical Biology, vol. 9, no. 6 (2012), p. 065002.

403

Chernet B., Levin M. Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals that Reveal, Induce and Normalize Cancer. Journal of Clinical and Experimental Oncology, Suppl. 1: S1-002 (2013).

404

Chernet & Levin, Endogenous Voltage Potentials.

405

Gruber B. Battling cancer with light. Reuters, 26 April 2016.

406

Chernet B., Levin M. Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model. Disease Models & Mechanisms, vol. 6, no. 3 (2013), pp. 595–607.

407

Silver & Nelson, The Bioelectric Code.

408

Tuszynski J. et al. Ion Channel and Neurotransmitter Modulators as Electroceutical Approaches to the Control of Cancer. Current Pharmaceutical Design, vol. 23, no. 32 (2017), pp. 4827–41.

409

Schlegel J. et al. Plasma in cancer treatment. Clinical Plasma Medicine, vol. 1, no. 2 (2013), pp. 2–7.

410

Brown J. Team Builds the First Living Robots. The university of Vermont, 13 January 2020.

411

Lee Y. et al. Hydrogel soft robotics. Materials Today Physics 15 (2020).

412

Thubagere A. et al. A Cargo-Sorting DNA Robot. Science, vol. 357, 6356 (2017), eaan6558.

413

Solon O. Electroceuticals: swapping drugs for devices. Wired, 28 May 2013.

414

Geddes L. Healing spark: Hack body electricity to replace drugs. New Scientist, 19 February 2014.

415

Behar M. Can the nervous system be hacked? The New York Times, 23 May 2014.

416

Mullard A. Electroceuticals jolt into the clinic, sparking autoimmune opportunities. Nature Reviews Drug Discovery 21 (2022), pp. 330–1.

417

Hoffman H., Schnitzlein H. N. The Numbers of Nerve Fibers in the Vagus Nerve of Man. The Anatomical Record, vol. 139, no. 3 (1961), pp. 429–35.

418

Davies D. Are Implanted Medical Devices Creating a “Danger Within us”? NPR, 17 January 2018.

419

Golabchi A. et al. Zwitterionic Polymer/Polydopamine Coating Reduce Acute Inflammatory Tissue Responses to Neural Implants. Biomaterials 225 (2019), 119519.

420

Leber M. et al. Advances in Penetrating Multichannel Microelectrodes Based on the Utah Array Platform. In: Zheng X. (ed.) Neural Interface: Frontiers and Applications. Singapore: Springer, 2019, pp. 1–40.

421

Yin P. et al. Advanced Metallic and Polymeric Coatings for Neural Interfacing: Structures, Properties and Tissue Responses. Polymers, vol. 13, no. 16 (2021), 2834.

422

Aregueta-Robles U. A. et al. Organic electrode coatings for next-generation neural interfaces. Frontiers in Neuroengineering, 27 May 2014.

423

The Nobel Prize in Chemistry 2000, NobelPrize.org.

424

Cuthbertson A. Material Found by Scientists “Could Merge AI with Human Brain”. The Independent, 17 August 2020.

425

Теоретически существует также возможность ингибировать потенциал действия, что означает стимулировать тормозные нейроны – такие нейроны, которые не дают возбуждаться другим нейронам. Но по сути это тот же самый механизм.

426

В попытках понять, как тело интерпретирует потенциалы действия, некоторые компании встраивают еще больше электродов, чтобы прослушивать ответные сигналы. Но такой подход влечет за собой повышенный риск, связанный с хирургическим вмешательством, и на людях таких экспериментов совершенно определенно не ставят.

427

Casella A. et al. Endogenous Electric Signaling as a Blueprint for Conductive Materials in Tissue Engineering. Bioelectricity, vol. 3, no. 1 (2021), pp. 27–41.

428

Demers C. et al. Natural Coral Exoskeleton as a Bone Graft Substitute: A Review. Bio-Medical Materials and Engineering, vol. 12, no. 1 (2002), pp. 15–35.

429

Базирующиеся в Израиле компании OkCoral и CoreBone выращивают кораллы, придерживаясь специальной диеты, что делает их наиболее подходящими для трансплантации.

430

Wan M. et al. Biomaterials from the Sea: Future Building Blocks for Biomedical Applications. Bioactive Materials, vol. 6, no. 12 (2021), pp. 4255–85.

431

DeCoursey T. Voltage-Gated Proton Channels and Other Proton Transfer Pathways. Physiological Reviews, vol. 83, no. 2 (2003), pp. 475–579.

432

Lane N. Why Are Cells Powered by Proton Gradients? Nature Education, vol. 3, no. 9 (2010), p. 18.

433

Kautz R. et al. Cephalopod-Derived Biopolymers for Ionic and Protonic Transistors. Advanced Materials, vol. 30, no. 19 (2018), p. 1704917.

434

Ordinario D. et al. Bulk protonic conductivity in a cephalopod structural protein. Nature Chemistry, vol. 6, no. 7 (2014), pp. 596–602.

435

Strakosas X. et al. Taking Electrons out of Bioelectronics: From Bioprotonic Transistors to Ion Channels. Advanced Science, vol. 4, no. 7 (2017), p. 1600527.

436

Kim Y. J. et al. Self-Deployable Current Sources Fabricated from Edible Materials. Journal of Materials Chemistry B 31 (2013), p. 3781.

437

Ordinario D. et al. Protochromic Devices from a Cephalopod Structural Protein. Advanced Optical Materials, vol. 5, no. 20 (2017), p. 1600751.

438

Sheehan P. Bioelectronics for Tissue Regeneration. Defense Advanced Projects Research Agency, 2022.

439

Kriegman S. et al. Kinematic Self-Replication in Reconfigurable Organisms. PNAS, vol. 118, no. 49 (2021), e2112672118.

440

Coghlan S., Leins K. Will self-replicating “xenobots” cure diseases, yield new bioweapons, or simply turn the whole world into grey goo? The Conversation, 9 December 2021.

441

Adamatzky A. et al. Fungal Electronics. Biosystems, vol. 212 (2021), p. 104588.

442

Nitsche M. A. et al. Facilitation of Implicit Motor Learning by Weak Transcranial Direct Current Stimulation of the Primary Motor Cortex in the Human. Journal of Cognitive Neuroscience, vol. 15, no. 4 (2003), pp. 619–26.

443

Trivedi B. Electrify your mind – literally. New Scientist, 11 April 2006.

444

Marshall L. et al. Transcranial direct current stimulation during sleep improves declarative memory. The Journal of Neuroscience, vol. 24, no. 44 (2004), pp. 9985–92.

445

Walsh V. Cognitive Effects of TDC at Summit on Transcranial Direct Current Stimulation (tDCS) at the UC-Davis Center for Mind & Brain. UC Davis YouTube channel, 8 October 2013. Относящийся к нашему тексту материал начинается примерно на 14-й минуте.

446

Wurzman R. et al. An open letter concerning do-it-yourself users of transcranial direct current stimulation. Annals of Neurology, vol. 80, no. 1 (2016), pp. 1–4.

447

Aschwanden C. Science isn’t broken: It’s just a hell of a lot harder than we give it credit for. Five Thirty-Eight, 19 August 2015.

448

Verma N. et al. Auricular Vagus Neuromodulation – A Systematic Review on Quality of Evidence and Clinical Effects. Frontiers in Neuroscience 15 (2021), 664740.

449

Young S. I’m not your inspiration, thank you very much. TED, June 2014.

450

Из беседы с автором на симпозиуме Международного общества по нейроэтике 2 ноября 2018 года. На эту тему см. также: Drew L. The ethics of brain-computer interfaces. Nature, 24 July 2019.

451

Strickland E. Worldwide Campaign for Neurorights Notches Its First Win. IEEE Spectrum, 18 December 2021.

452

Coghlan A. Vaping really isn’t as harmful for your cells as smoking. New Scientist, 4 January 2016.

453

. Committee on the Review of the Health Effects of Electronic Nicotine Delivery Systems and Others. In: Stratton K. et al. (eds) Public Health Consequences of E-Cigarettes. Washington, DC: 2018, p. 24952.

454

Moehn K. et al. Investigating the Effects of Vaping and Nicotine’s Block of Kir2.1 on Humerus and Digital Development in Embryonic Mice. FASEB Journal, vol. 36, no. S1 (2022).

455

Benzonana L. et al. Isoflurane, a Commonly used Volatile Anesthetic, Enhances Renal Cancer Growth and Malignant Potential via the Hypoxia-Inducible Factor Cellular Signaling Pathway In Vitro. Anesthesiology, vol. 119, no. 3 (2013), pp. 593–605.

456

Jiang J., Jiang H. Effect of the Inhaled Anesthetics Isoflurane, Sevoflurane and Desflurane on the Neuropathogenesis of Alzheimer’s Disease (Review). Molecular Medicine Reports, vol. 12, no. 1 (2015), pp. 3–12.

457

Robson D. This is what it’s like waking up during surgery. Mosaic, 12 March 2019.

458

Edelman E. et al. Case 30-2020: A 54-Year-Old Man with Sudden Cardiac Arrest. New England Journal of Medicine, vol. 383, no. 13 (2020), pp. 1263–75.

459

Hesham R. O. et al. Licorice Abuse: Time to Send a Warning Message. Therapeutic Advances in Endocrinology and Metabolism, vol. 3, no. 4 (2012), pp. 125–38.

460

Вообще говоря, я подмечаю две тенденции: критические замечания по этому вопросу чаще высказывают женщины-ученые; мужчины иногда не выражают никакого беспокойства.

461

Davies P. The Demon in the Machine. London: Allen Lane, 2019, p. 86.

462

McNamara H. M. et al. Bioelectrical domain walls in homogeneous tissues. Nature Physics 16 (2020), pp. 357–64.

463

Davies, The Demon in the Machine, pp. 82–3.

464

Pietak A., Levin M. Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine. Frontiers in Bioengineering and Biotechnology, vol. 4, 55 (2016).