На пути к бионике — страница 2 из 45

- в пении... Природа сама научает нас сельскому хозяйству..."*.

* ("Демокрит в его фрагментах и свидетельствах древности". М.- Л., Соцэкгиз, 1935, стр. 139.)

Это стремление подражать творчеству живой природы, созданным ею биологическим системам, нашло свое яркое выражение уже в первых орудиях труда, созданных человеком на заре его трудовой деятельности. Так, археологические данные о первых топорах показывают, что режущим элементом в них был острый камень, напоминающий естественный зуб медведя, то есть являлся прямым подражанием естественному образцу. Другой пример. Изучение хрусталика глаза в процессе хирургических операций натолкнуло врачей древности на мысль об использовании линз, изготовленных из хрусталя или стекла, для увеличения изображения. "Создание линзы,- отмечает Джон Бернал,- является первой попыткой расширить сенсорный аппарат человека... Линза стала прототипом телескопа, микроскопа... и других оптических приборов позднейшего времени. Если бы арабские врачи создали только оптику и ничего больше, то и в этом случае они внесли бы важнейший вклад в науку"*.

* (Дж. Бернал. Наука в истории общества. М., Изд-во иностр. лит., 1956, стр. 165.)

Начав с изучения внешней, наблюдаемой стороны творений природы, с копирования того, что было доступно непосредственно созерцанию, человек в дальнейшем стал вникать в сущность вещей и процессов окружающего мира, научился вскрывать их глубокие взаимосвязи, познавать законы природы и, опираясь на добытые знания, перешел к преобразованию познанных вещей и процессов в соответствии с запросами практики. Так, в области физики изучение многих основных принципов учения об электричестве было начато с исследования, так называемого животного электричества. В частности, знаменитые опыты итальянского физиолога XVIII века Луиджи Гальвани (1737-1798) с лапкой лягушки привели в конечном итоге к созданию гальванических элементов - химических источников электрической энергии. Французский физиолог и физик XIX столетия Жан Луи Мари Пуазейль (1799-1869) на основе экспериментальных исследований тока крови в кровеносных сосудах установил (в 1840-1841 годах) закон течения жидкости в тонких трубках.

И еще пример. Тысячи лет человек мечтал летать, как птица, и это вдохновляло его на создание бесчисленных проектов летательных аппаратов. В дошедших до нас трудах алхимика Иакова IV Шотландского, Джоана Домиана (ок. 1500 года), в тетрадях гениального художника, замечательного инженера, гидравлика и механика Леонардо да Винчи (1452-1519) можно найти множество схем, набросков, рисунков летательных аппаратов с машущими крыльями. Но все попытки построить летательный аппарат на принципе машущих крыльев птицы неизменно терпели неудачи. Изобретателям не хватало одной существенной детали - двигателя, достаточно легкого и мощного, чтобы приводить в движение крылья; в их распоряжении была только мышечная сила человека, заведомо непригодная для этой цели. Великий русский ученый Н. Е. Жуковский (1847-1921), анализируя полет птиц, открыл "тайну крыла", разработал методику расчета подъемной силы крыла, той силы, которая держит самолет в воздухе. Результаты изучения особенностей полета птиц ученый не замедлил использовать в начавшем развиваться отечественном самолетостроении. Его работа "О парении птиц" (1881 год) лежит в основе современной аэродинамики. Таких примеров успешно заимствованных человеком у живой природы замечательных идей, конструкторских, технологических и других решений, сыгравших выдающуюся роль в развитии ряда областей науки и техники, можно было бы привести еще десятки и сотни.

Однако было бы ошибочно думать, что во всей своей многогранной инженерной деятельности человек только и делал, что подражал природе. Множество различных технических систем, технологических процессов, которых никогда не знала природа, он создал совершенно самостоятельно. Более того, на каком-то этапе своей изобретательской деятельности человек переключил большую часть своей энергии, знаний, весь свой творческий гений на создание новой, "искусственной" природы. А потом обнаружилось, что многие технические конструкции, которые человек изобрел сам, считал их пределом совершенства, гордился их оригинальностью, давным-давно запатентованы живой природой. За примерами далеко ходить не надо.

Приближалась сотая годовщина Великой французской революции. К этой дате решили организовать в Париже всемирную выставку, а на территории выставки воздвигнуть башню, которая должна была символизировать величие французской революции и новейшие достижения техники. На конкурс поступило 700 проектов. Лучшим был признан проект инженера-мостовика Александра Гюстава Эйфеля. По окончании строительства башни известный в то время поэт Максимилиан Волошин, большой любитель всяких шуток и "розыгрышей", распустил слух, будто в Эйфелевой башне, поразившей в конце XIX столетия весь мир своей высотой и ажурностью, нет ничего нового - она якобы построена по чертежам одного арабского ученого. Это была, конечно, шутка. Но позднее, внимательно изучив строение живой ткани и конструкцию трехсотметровой башни, ставшей своеобразным символом Парижа, биологи и инженеры сделали неожиданное открытие: изящная конструкция Эйфелевой башни в точности повторяет (совпадают даже углы между несущими поверхностями) строение... большой берцовой кости, легко выдерживающей тяжесть человеческого тела!

Рис. 1. Строение пухоноса и устройство фабричной трубы

Аналогичный факт зарегистрирован в истории авиации. Длительное время страшным бичом скоростной авиации был флаттер - внезапно и бурно возникающие на определенной скорости вибрации крыльев, которые приводили к тому, что самые прочные конструкции самолетов разваливались в воздухе за несколько секунд. После многочисленных аварий конструкторы в конце концов научились бороться с этим бедствием: крылья стали делать с утолщением на конце. И уже потом, задним числом, нашли точно такие же утолщения - птеростигмы - на концах крыльев стрекозы!

Не менее интересный сюрприз преподнес инженерам и пухонос-растение из семейства осоковых. Оказывается, одно из самых последних достижений инженерной мысли-высотная фабричная дымовая труба удивительно сходна по конструкции со стеблем пухоноса: обе конструкции полые, склеренхимные тяжи* стебля пухоноса, так же как и продольная арматура, располагаются по его периферии. Вдоль стенок обеих конструкций находятся овальные вертикальные пустоты. Роль спиральной арматуры, размещенной у внешней стороны трубы, в стебле пухоноса играет тонкая кожица.

* (Склеренхима - основная механическая ткань растения (от слова "склероз" - твердый, застывший).)

Такое удивительное сходство конструктивных решений инженеров и природы в случае с Эйфелевой башней, флаттером и фабричной дымовой трубой на первый взгляд может показаться чистой случайностью. Однако это не случайность. В этом можно легко убедиться, рассмотрев более детально, как складывались конструктивные особенности, скажем, фабричной дымовой трубы и стебля пухоноса. Основная функция фабричной трубы, как известно, состоит в создании тяги, необходимой для нормального протекания процессов горения и в отведении вредных газов (дыма) в высокие слои атмосферы. Это обусловило значительные вертикальные размеры ствола трубы. Высота же стебля пухоноса определяется постоянной потребностью растения в энергии солнца. Труба и пухонос находятся под воздействием однотипных статических и динамических нагрузок: собственного веса, ветра, бури и т. д. Однотипность внешних механических воздействий и потребность в вертикальности и обусловили их конструктивное сходство. Решения человека и природы оказались едиными.

Прослеживая процесс эволюционного развития технических и живых конструкций, ученые все больше и больше убеждаются, что здесь имеется много общего. Природа и техника строят по одним и тем же законам, соблюдают принцип экономии материала, ищут для создаваемых систем оптимальные конструктивные решения. Именно поэтому во всех приведенных нами случаях инженеры и природа пришли к единому решению независимо друг от друга.

Ныне довольно часто можно услышать такую остроумную шутку: "Инженеры сначала создают конструкции, а уже потом обнаруживают их подобие в живой природе". А когда находят, говорят: "Смотрите, даже в природе..."

Невольно возникает вопрос: почему такой дорогой ценой в прошлом и еще довольно часто сегодня человечество продолжает платить за "изобретение велосипеда"?

Причин много.

Первая. Биологии было давно известно о многочисленных полезных механизмах живой природы. Однако накопленные биологией знания не могли быть материализованы, претворены в реальные технические системы, поскольку в биологии преобладали анализ и словесное описание, отсутствовала теория и практика биологического моделирования.

Вторая. Биология столетиями развивалась вне связей с техникой. Она не составила для инженеров путеводителя по "патентной библиотеке" природы - где и у кого искать нужный аналог для создания той или иной технической системы. Эйфелю, например, и невдомек было (хотя он, вероятно, не раз видел человеческий скелет и слышал о прочности его костей) искать прообраз своей чудо-башни в берцовой кости человека. Он рассчитал ее сугубо математическими методами. Точно так же и авиаконструкторам не приходила на ум мысль, что у стрекоз нужно искать птеростигмы - единственное эффективное средство борьбы с флаттером.

Третья. Анализ творчества инженеров, зодчих, строителей, пытавшихся в прошлом копировать природу, показывает, что мало кто из них задумывался над тем, что природа не только красиво "построена", но и едва ли не идеально "рассчитана", что, создавая в процессе эволюции любое из своих творений, природа связывала в нем воедино гармонию красоты с гармонией целесообразности - придавала ему ту единственно верную форму, которая с точки зрения инженера является оптимальной. Но и при самом горячем желании порой не так-то легко разобраться в принципах формообразования биосистем. Биологические формы зачастую не могут быть ни рассчитаны современными методами инженерной и математической науки, ни даже вычерчены из-за своей сложности. Это, разумеется, не означает, что они незакономерны. Просто мы еще не знаем законов их формирования.