Четвертая. Природа нелегко раскрывает секреты своего творчества. Расспрашивать ее о тайнах структурообразования живых организмов, о происходящих в них жизненных процессах, об устройстве и принципах функционирования многочисленных тончайших механизмов можно лишь путем кропотливых исследований с помощью специально разработанных методов, с помощью новейшей экспериментальной техники - электронной, киносъемочной, химической и другой аппаратуры. Весь этот арсенал методов и средств научных исследований начал создаваться лишь недавно.
Пятая. Живые системы значительно многообразнее и сложнее технических конструкций. Чтобы познать "конструкцию" и принцип действия биологической системы, промоделировать ее и претворить в металле, исследователю необходимы универсальные знания. Между тем до сравнительно недавнего времени шел интенсивный процесс дробления научных дисциплин. На определенном этапе такая дифференциация знаний способствовала успешному развитию всех или почти всех отраслей науки и техники. Но в дальнейшем узкая специализация ученых стала тормозить прогресс: усложнилось общение специалистов, работающих даже в смежных областях. Ученые начали говорить на разных "языках" и подчас плохо понимать друг друга. Изобретать, творить - это значит сопоставлять явления. Но для этого необходимо объединить специалистов разных профилей, нужно, чтобы они научились понимать друг друга, нашли общий язык. Тогда вместо одного индивидуального мозга возникнет как бы коллективный мозг, обладающий универсальными знаниями. Иными словами, появилась настоятельная потребность такой организации знаний, которая позволила бы охватить их целиком, интегрировать на основе единых всеобъемлющих принципов.
Устранимы ли все перечисленные причины, мешающие человеку широко использовать богатейший опыт инженерного творчества живой природы? Вполне! Начало этому положила родившаяся в середине нашего века кибернетика - наука, изучающая процессы передачи и преобразования информации в технических устройствах, в живой природе, в обществе; наука о процессах управления.
В кибернетике нашла наиболее яркое отражение одна из главных особенностей современной научно-технической революции - взаимопроникновение самых различных и даже противоположных по своим предметам и методам наук. Она первая перебросила мост от биологии к технике, способствовала синтезу биологических и технических знаний. Кибернетика не только установила принципиальную аналогию в построении и функционировании живых и технических систем, но и выработала единый подход к изучению процессов управления и организации в мире животных и машин.
Развитие кибернетики привело к бурному развитию автоматики и телемеханики, радиоэлектроники, связи, вычислительной техники. Возникло множество новых научных и инженерных проблем. Появилась необходимость в повышении надежности радиоэлектронных систем, в создании электронно-вычислительных машин, решающих задачи без предварительного программирования, в разработке методов сбора, кодирования, обработки и накопления информации для самоорганизующихся систем и машин, в создании систем, обладающих свойством автоматически менять свои параметры в соответствии с изменением внешних условий и т. п.*.
* (См: Б С. Сотсков. Ускоритель научно-технической революции. "Наука и жизнь", 1969, № 9, стр. 22-23.)
Весь этот обширный круг задач заставил ученых вновь обратиться к живой природе, пойти к ней на выучку. Это целенаправленное стремление ученых и инженеров понять, в чем природа совершеннее, умнее, экономичнее современной техники, попытка найти в ее богатейшей "патентной библиотеке" новые идеи, методы и средства для решения многочисленных инженерных проблем породили новое научное направление, получившее название бионика (от древнегреческого слова bion - элемент жизни, ячейка жизни, или, точнее, элемент биологической системы).
В отличие от многих других научных дисциплин, время зарождения которых установить трудно, а порой и невозможно, датой появления на свет бионики официально принято считать 13 сентября 1960 года - день открытия в Дайтоне (штат Огайо) американского национального симпозиума на тему "Живые прототипы - ключ к новой технике". Бионика - наука междисциплинарная, или, как принято сейчас говорить, наука-перекресток. Она сформировалась на базе естественных и многочисленных инженерно-технических наук. По существу она синтезирует накопленные знания в биологии и радиотехнике, химии и кибернетике, физике и психологии, биофизике и приборостроении, зоопсихологии и строительном деле и т. д. Бионика соединяет разнородные знания в соответствии с единством живой природы. Не случайно бионики избрали своей эмблемой скальпель и паяльник, соединенные знаком интеграла. Скальпель - символ творчества биолога, паяльник - инженера, интеграл - математика. Соединение этих специальностей как нельзя лучше отражает основу, на которой оформилась и бурно развивается бионика.
Каковы же особенности повой науки? В чем ее суть? Каковы предмет и метод бионики?
Предметом бионики является изучение принципов построения и функционирования живых организмов с целью применения этих принципов в технике, для коренного усовершенствования существующих и создания принципиально новых машин, приборов, механизмов, строительных конструкций и технологических процессов. Ее можно также назвать наукой о системах, которым присущи специфические характеристики природных систем или систем, которые являются их аналогами.
Основным методом бионических исследований, построения бионических систем является моделирование. В бионике используется математическое и физическое моделирование. Для изучения моделей живого бионика проводит также специальное моделирование среды, то есть воссоздает условия, в которых функционирует живая система, и в которых будет практически работать ее искусственный аналог. Изучая биологические объекты и процессы, бионика не идет по пути слепого копирования "изобретений" природы. Она стремится позаимствовать у нее лишь самые совершенные конструктивные и технологические решения, которые обеспечивают биологическим системам исключительно высокую гибкость и живучесть в сложных условиях их существования. Другими словами, бионика стремится перенести в технику лучшие создания природы, самые рациональные и экономичные структуры и процессы, которые выработались в биологических системах за миллионы лет эволюционного развития.
В многообразной тематике ведущихся ныне бионических исследований наиболее четко вырисовались пять направлений: нейробионика, моделирование анализаторных систем, ориентация и навигация, биомеханика, биоэнергетика. Что же достигнуто бионикой в каждом из этих направлений и чего можно ожидать от новой науки в обозримом будущем?
Переработка информации у высших животных и у человека, как известно, происходит в нервной системе. Основная единица этой сложной системы - нервная клетка (нейрон). Поэтому естественно, что исследование способов преобразования информации в биологических системах началось с изучения нейронов и разработки их различных математических и технических аналогов. Но это лишь первая ступень исследования. Широкие возможности в моделировании нервных процессов появляются лишь тогда, когда от построения аналогов отдельных нейронов переходят к созданию их комплексов - моделированию нервных сетей. Моделирование нейронов и нервных сетей привело к построению ряда специальных бионических устройств, позволяющих успешно решать множество задач, связанных с передачей и обработкой информации. Примером таких устройств являются перцептроны - обучающиеся самоорганизующиеся системы, выполняющие логические функции опознавания и классификации образов.
Предпринимаются попытки по аналогии с живой природой выращивать искусственные нейроны и целые системы искусственных нейронов. Это позволит резко повысить надежность, быстродействие, снизить массу, габариты и потребляемую мощность электронных систем. Бионики надеются, что в будущем дело дойдет до построения белковых машин, как предсказывал Н. Винер.
В широком масштабе ведутся работы по моделированию органов восприятия (анализаторных систем). Из известных пяти органов чувств основное внимание уделяется исследованию органов зрения, поскольку около 90% информации о внешнем мире поступает в биологическую систему через зрительный аппарат. Тщательное изучение глаз некоторых животных позволило обнаружить многие ранее неизвестные свойства зрительных органов и разработать по их образцу ряд оригинальных, весьма важных для различных областей практики устройств. Например, электронная модель глаза мечехвоста позволяет улучшить работу телевизионных трактов ряда систем. Бионическое устройство - "визилог", разработанное американскими учеными, может выполнять некоторые функции человеческого глаза: воспринимать изображение, проводить измерения и передавать информацию. Предполагают, что такие устройства будут устанавливаться на непилотируемых космических кораблях, посылаемых на Луну, Марс, Венеру.
Во многих лабораториях, научно-исследовательских институтах ряда стран изучаются конструктивные особенности созданных природой звуковых анализаторов. Результаты проведенных исследований пока еще скромны, но многообещающи. Разработана электронная модель, воспроизводящая частотные характеристики человеческого уха. Создана электронная модель слухового органа, обеспечивающая различение слабых сигналов на фоне шумов. Сотрудники Ленинградского электротехнического института связи имени проф. Бонч-Бруевича построили электронное ухо для оценки качества звучания музыкальных инструментов. Успешно ведутся работы по созданию устройств для автоматического распознавания устной речи, голосовых командных систем. Уже создано несколько моделей пишущих машинок-автоматов, печатающих под диктовку. Ведутся работы по вводу данных в ЭВМ без перфокарт, без перфолент, посредством голоса.
Бионика ведет широкие исследования морфологических особенностей живых организмов. Важная и значительная часть этих исследований относится к биомеханике. Изучаются структурные и функциональные особенности рук и ног человека, механика бега, прыжков, ползания ряда животных, форма тела и локомоторный аппарат рыб, моллюсков, дельфинов, акул, китов, полет птиц и насекомых. Так, анализ способа передвижения пингвинов привел конструктора А. Ф. Николаева к созданию оригинальной снегоходной машины "Пингвин", развивающей скорость до 30 километров в час; бег кенгуру подсказал идею "прыгающей" машины. Построены также шагающие и ползающие системы, обладающие высокой проходимостью в условиях пересеченной местности и мягких грунтов. Разработано большое число манипуляторов, в той или иной степени повторяющих элементы конструкции человеческой руки. Широко известны созданные в СССР биоманипуляторные протезы для инвалидов, управляемые биотоками. Значительные успехи достигнуты и гидробионикой. По форме обводов тела кита построено океанское судно "Куренаи Мару"; его необычный контур корпуса дает выигрыш в потребной мощности силовых установок около 15%. Моделирование некоторых гидродинамических параметров рыб-хищников позволило повысить скорость и улучшить маневренность подводных лодок. Изготовлены опытные образцы искусственной "быстроходной" дельфиньей кожи - "ламинфло". Обшитые ею торпеды и катера при тех же мощностях силовых установок движутся почти в два раза быстрее. Многообещающими для будущего авиастроения являются проводимые бионические исследования полета птиц и насекомых. Бионика интенсивно и целенаправленно ищет разгадки феноменальной подъемной силы живого крыла, пытается постигнуть закономерность машущего полета, познать секрет его высокой экономичности.