Ситуация стала парадоксальной: статистическая физика, законы которой, несомненно, правильны, ведет, с одной стороны, к формуле Вина, а с другой — к распределению Рэлея — Джинса, но при этом закон смещения Вина выполняется в обоих случаях. Формула Вина подтверждается на высоких частотах, формула Рэлея — на низких. Эти заключения вытекали из скрупулезных измерений О. Р. Люммера (1860–1925) и Э. Принсгейма (1859–1917), сумевших измерить к 1899 г. излучательную способность «черного» тела в очень широком интервале температур — от 85 до 1800 К.
Экспериментаторы, проверившие все это, обратились к Максу Планку, признанному авторитету в термодинамике. Планк понял, что нужно искать некую формулу, такую, которая будет преобразовываться для малых и высоких частот в два уже известных выражения. Исходя из понятия энтропии, он отыскивает — точнее, угадывает — такую формулу 25 октября 1900 г. Она действительно переходит в формулы Вина и Рэлея, но с какими-то неопределенными коэффициентами. Однако это еще не все: нужно ее доказать, понять каким изменениям в теории она соответствует.
И Планк обращается к статистической теории Больцмана: он начинает рассматривать излучающую среду как состоящую из набора отдельных излучателей, вернее осцилляторов (от латинского «осцилляре» — колебаться). И тут он совершает поистине революционный шаг — принимает, что энергия, испускаемая каждым осциллятором, должна быть пропорциональна его частоте. Тогда нужен коэффициент пропорциональности между частотой и энергией, а так как частота измеряется в обратных секундах, то этот коэффициент должен измеряться в эргах (или, сейчас, в джоулях), умноженных на секунду, — энергия на время.
Макс Карл Эрнст Людвиг Планк (1858–1947, Нобелевская премия 1918 г.) — первый физик-теоретик по специальности (до него все физики занимались и экспериментом). Помимо работ по теории квантов, он провел важнейшие исследования в термодинамике, теории относительности (и ввел само это название), вывел законы химического равновесия в газах и разбавленных растворах. С самого начала поддерживал работы Эйнштейна, оставался его старшим товарищем во все времена.
Макс Планк происходил из традиционной прусской семьи военных и священников, один его сын погиб на фронте Первой мировой войны, второй был казнен как участник заговора 1944 г. против Гитлера. Планк был очень религиозен, после 1945 г. он руководил восстановлением науки в Германии.
Такая величина была введена еще Лейбницем и названа функцией действия, а позднее Лагранж, Гамильтон, Якоби показали, что знания этой функции достаточно для построения всех законов механики.
Но Планку нужна не функция действия, а некоторая постоянная величина, и он принимает, что в процессах излучения роль играет постоянная размерности действия, ее квант (от латинского «квантум» — количество), и вычисляет величину, обозначаемую с тех пор латинской буквой h[1] (сейчас чаще используют ħ = h/2π, т. е. в 6,28 раз меньшую), которая обеспечит точный переход к обоим предельным случаям формулы излучения. Как он писал Планк: «После нескольких недель самой напряженной работы в моей жизни тьма, в которой я барахтался, озарилась молнией, и передо мной открылись неожиданные перспективы».
Свою работу Планк скромно зачитывает 14 декабря 1900 г. тихим профессорским голосом на заседании Немецкого физического общества. Той же ночью Генрих Рубенс (1865–1922) пересчитывает экспериментальные данные и ранним утром радует Планка — все сходится! Но они еще не понимают, что произошло…
Этот день, 14 декабря 1900 г., физики считают началом нового, XX в. Отсюда начинается научная революция 1900–1930 гг., полностью изменившая не только физику и связанные с ней науки, но и все научное мировоззрение: по известному определению А. Эйнштейна, это была «драма идей» или, по образному выражению Я. Б. Зельдовича, это была тридцатилетняя война против обывательского «здравого смысла»[2]. И при этом, как нужно отметить, сам Планк по натуре своей не был революционером, позже он писал в письме Р. Вуду, что это был с его стороны «акт отчаяния», предпринятый потому, что «теоретическое объяснение должно было быть найдено любой ценой, сколь бы высокой она ни была».
Когда М. Планк, тогда начинающий студент, обратился к известному физику Ф. И. фон Жолли (1809–1884) за советом по выбору темы исследований, то маститый профессор сказал: «Молодой человек, поищите себе лучше другое поле деятельности. Физика уже закончена, все интересное, что можно было исследовать, уже открыто». Это был не первый, но и не последний случай, когда физику объявляли завершенной, но конца ее и сегодня не видно.
Вывод Планка математически и методологически не был безупречным: и он сам, и другие не раз его пересматривали и улучшали, но главное было уже сделано: в физику, имевшую до того дело только с непрерывными изменениями основных параметров, было введено понятие скачков энергии. (До Планка единственной величиной, которая изменялась скачком, был электрический заряд: открытие электрона показало, что он не может изменяться произвольно.)
Дважды в своей жизни Планк, всегда сдержанный и уравновешенный, выходил из себя: в 1908 г., когда начался многолетний спор с Э. Махом о реальности атомов, и в 1933 г., когда он пытался защитить перед Гитлером своих коллег, изгоняемых из Германии…
Оценивая открытие Планка, А. Эйнштейн писал: «Именно закон излучения Планка дал первое точное определение абсолютных величин атомов, независимо от остальных предложений… Это открытие стало основой для всех исследований в физике XX в., и с того времени почти полностью обусловило ее развитие».
Но так до поры до времени думали далеко не все — вплоть до 1905 г. открытие Планка почти не упоминается в научной литературе. И так продолжалось до знаменитой статьи Эйнштейна «Об одной эвристической точке зрения, касающейся возникновения и превращения света», появившейся в 1905 г. в том же томе журнала «Анналов физики» (Annalen der Physik), что и его статьи о броуновском движении (о ней мы говорили) и о теории относительности. Статья эта была, по мнению самого Эйнштейна, более революционной, чем создание теории относительности, хотя иногда данную работу цитируют только как теорию фотоэффекта.
Для того чтобы понять суть нововведений Эйнштейна, нужно рассказать о некоторых особенностях фотоэффекта. Явление это было обнаружено Г. Герцем в 1887 г., почти одновременно то же самое наблюдали еще несколько ученых, не понявших сути увиденного. (Вообще-то еще в 1839 г. А. С.Беккерель, дед первооткрывателя радиоактивности, заметил, что если на электрод одного из его гальванических элементов падает свет, то электродвижущая сила элемента меняется, однако никто этим явлением тогда не заинтересовался.) Вскоре начались интенсивные исследования фотоэффекта. Так, Александр Григорьевич Столетов (1839–1896) показал, что существует так называемая красная граница — если длина волны света становится больше определенной величины, своей для каждого металла, то эффект пропадает (1889), он же создал первый фотоэлемент, который включал электрическую цепь при попадании на него света. Дж. Дж. Томсон, а затем Ф. Ленард доказали, что фототок состоит из электронов (1899); было также установлено, что энергия этих электронов не зависит от интенсивности света.
Как же Эйнштейн приступает к этой проблеме?
Эйнштейн великолепно понимает, что явления интерференции и дифракции опровергли корпускулярную картину распространения света и утвердили волновую теорию, но, как он пишет, эти эксперименты говорят только о средних величинах. Поэтому не исключено, что волновые представления могут оказаться недостаточными, когда речь идет о мгновенных процессах, об излучении и поглощении света.
В упомянутой выше статье статье Эйнштейн принимает гипотезу Планка о квантованном испускании света, но идет много дальше: он показывает, что свет не только должен испускаться порциями, квантами, но и поглощаться он должен теми же квантами и распространяться в виде потока квантов. Поэтому Эйнштейн выдвигает такое положение: кванты (фотоны — это название для квантов света предложил в 1929 г. известный физико-химик Г. Н. Льюис (1875–1946)) поглощаются поодиночке, энергия каждого кванта, полученная одним электроном атома, идет на работу выхода электрона из вещества (сейчас эти величины приводятся в таблицах), а ее остаток превращается в кинетическую энергию электрона.
Статья Эйнштейна вызвала яростное сопротивление физиков: говоря о распространении света в виде потока фотонов, он тем самым покушался на уравнения Максвелла, требовавшие волн и только волн, а волна, по самому своему определению, не может быть локализована, т. е. не может сосредоточиться в очень малом объеме — она распространяется по всему пространству! Такой шаг Эйнштейна не сравним по своей дерзости даже с гипотезой Планка, который всего лишь говорил о поглощении порциями, но акт поглощения не описывается, вообще говоря, уравнениями Максвелла, и поэтому всеми допускалось, что там вполне может быть нечто необычное.
Еще в 1913 г., представляя Эйнштейна для избрания в Прусскую академию наук, Планк и другие академики пишут, что на фоне его новаторских достижений не стоит слишком нападать на сомнительную теорию квантов. По иронии судьбы, именно за работу по теории фотоэффекта Эйнштейн был удостоен Нобелевской премии 1921 г., так как ее результаты были вскоре подтверждены рядом экспериментов, наиболее значимыми и доказательными из которых были измерения Р. Э. Милликена в процессе определения величины заряда электрона.
Роберт Э. Милликен (1868–1953, Нобелевская премия 1923) изучал в крохотном колледже Оберлин (штат Огайо) классические языки и литературу. Профессор греческого языка попросил его подучить физику, чтобы на следующий год преподавать ее элементарный курс. — «Но я не знаю физики», — говорил Милликен. — «Каждый, кто хорошо усваивает греческий, может преподавать физику», — отвечал профессор. — «Хорошо, — согласился студент, — но за все последствия отвечаете Вы». (Преподавание физики в США было в то время на очень низком уровне, в будущем именно Милликен сыграл большую роль в его модернизации.) Сам он, с помощью А. Майкельсона, смог приступить к исследованиям только в возрасте около 40 лет. Милликен выпустил подробную и живо написанную автобиографию.