Основной принцип нечеткой логики гласит: все зависит от степени и познается в сравнении. В данной книге нечеткая логика, одно из величайших достижений математики XX века, рассматривается через призму человеческой жизни и окружающего нас мира, а также мировоззрения. Некоторые вещи никогда не будут нечеткими, в основном это вещи, происходящие из мира математики. В этом мире Бог или же человек не оставили места нечеткости. Мы соглашаемся с утверждением, что 2 + 2 = 4, но когда возвращаемся из мира математики в реальный мир, окружающий нас, балом правит нечеткость. Она стирает рамки, размывает границы, словно мы разрезаем границы Вселенной на кусочки тупым ножом.
У нечеткости есть свое имя в науке – поливалентность, то есть способность образовывать множественные различные связи. Антонимом здесь послужит двухвалентность, подразумевающая лишь два варианта ответа на вопрос либо однозначное утверждение о каком-либо факте: оно может быть только истинно или исключительно ложно. Как уже было упомянуто выше, нечеткость подразумевает многовалентность, иными словами, широкий спектр возможностей и вероятных ответов и комментариев относительно какого-либо утверждения вместо лишь сухих двух. Это означает, что нечеткая логика обладает всем диапазоном оттенков серого цвета для описания мира вместо всего лишь двух, черного и белого.
Ученые в 20–30-х годах прошлого века впервые разработали многозначную логику для решения принципа неопределенности Гейзенберга в квантовой механике, о чем мы поговорим ниже. Принцип неопределенности Гейзенберга гласит: чем точнее измеряется одна характеристика частицы, тем менее точно можно измерить вторую. Принцип предполагает, что мы действительно имеем дело с трехзначной логикой: утверждения, которые являются истинными, ложными или неопределенными.
Польский логик Ян Лукасевич нарезал среднюю «неопределенную» составляющую на несколько частей и придумал многозначную логику. Термин «нечеткая логика» прочно вошел в научный язык. До тех пор логики, такие как Бертран Рассел, для описания многозначности использовали термин «неопределенность». В 1937 году квантовый философ Макс Блэк опубликовал статью о неопределенных множествах (о том, что мы теперь называем нечеткими множествами). Мир науки и философии проигнорировал статью Блэка, иначе мы могли бы теперь обсуждать историю смутной, а не нечеткой логики.
В 1965 году нечеткая логика появилась в работах Лотфи Заде, профессора технических наук Калифорнийского университета. В своих работах Заде обращался к термину многозначной логики, введенному Лукасевичем, перечисляя и рассматривая множества объектов и предметов, – аналогично примеру со множеством людей, удовлетворенных и неудовлетворенных своей работой. Лотфи Заде предложил миру науки того времени нечеткую логику, чтобы связать математику с интуитивным способом, которым люди разговаривают, думают и взаимодействуют с миром. Работа Заде стала основополагающей в возникновении теории нечетких множеств.
Введение термина «нечеткости» спровоцировало шквал научного гнева, обрушившегося на его создателя, а точнее говоря, с появлением данного термина появился целый ряд научных проблем. Государство отказывалось финансировать исследования в области «нечеткости»; газеты и журналы не хотели публиковать статьи на эту тему; университеты не поощряли исследователей нечеткости и их научные работы; можно сказать, что в то время небольшое сообщество ученых, пропагандирующих учение о нечеткости, ушло в подполье. Но, тем не менее, со временем оно обрело силу, стремление развиваться и стало полноценным учением. Условия, в которых оно развивалось, лишь укрепили его постулаты.
Нечеткая логика не достигла успеха на своем поприще в университетах. Она скорее преуспела на коммерческом рынке и перескочила философские возражения западных ученых. Нечеткий принцип возник с попыток западной культуры отрицать его, игнорировать, опровергать и всячески бороться с возможностью его развития. Наши рассуждения всегда остаются нечеткими. Более того, мы можем обеспечить бытовые приборы некоторым интеллектом исходя из принципов нечеткости и используя нечеткие концепции. Безусловно, медленное распространение нечеткости по миру насторожило многих ученых и в некоторой степени напугало их, поскольку ученые того времени были уверены, что в основе работы бытовой техники и прочих машин заложена строгая черно-белая логика и математические постулаты и принципы. Этот процесс спровоцировал новые обсуждения искусственного интеллекта. В данной книге мы рассмотрим нечеткий принцип в разных вариациях: от Древней Греции и Индии до современной Японии и не только: умная бытовая техника и инновационное оружие будущего встретятся на стыке науки и инженерии.
Итак, теперь мы знаем, что одним из первых логиков, предложивших в 1930 году вариант многозначной логической системы, отличающийся от классической бинарной логики, был польский математик Ян Лукасевич. В трехзначной логике Лукасевича использовалась три возможных истинных значения: «ложь», «истина», «возможность». В качестве высказываний с истинностным значением «возможно» могли выступать такие, которые относились к некоторому моменту времени в будущем. Затем термин «нечеткая логика» был введен профессором Лотфи Заде в работе «Нечеткие множества» в журнале «Информатика и управление». Предметом нечеткой логики стало исследование рассуждений в условиях нечеткости, размытости, сходных с обычными рассуждениями, и их применение в вычислительных системах. Лотфи Заде по праву считается отцом нечеткой логики. Мировая наука действительно изменилась после его открытий: на сегодняшний день нечеткая логика широко применяется в производстве бытовой техники, управлении транспортными средствами и промышленными процессами. Помимо прочего, нечеткая логика применяется и в политике, и в экономике. Вопреки аристотелевскому положению, которое может быть верным или неверным, Заде доказал, что степень истинности любого утверждения принимает непрерывные значения между истинностью и ложностью. Заде сделал открытие, которое противоречит теории великого Аристотеля, призывает видеть и воспринимать мир более красочным. Теория нечетких множеств, представленная Заде, стала новой вехой в информационных технологиях.
Но теория была скептически воспринята не только в США, но и в научных кругах во всем остальном мире. Причиной этому послужило противоречие этой теории логике самого Аристотеля, которой люди руководствовались на протяжении многих веков. Аристотель всегда считался основоположником классической теории логики. Однако классическая логика имеет большой недостаток – ее применение бесполезно в случае описания мышления человека. Проблема заключается в том, что возможно оперировать только двумя утверждениями: истина и ложь, других средних значений между ними не существует. Двоичная логика, которая, сравнивая два числа, определяет состояние системы, также признает только единицы и нули. В случае с вычислительными машинами не возникает проблем, но описание окружающего мира исключительно двумя понятиями представляет собой практически нерешаемую задачу. Нечеткая логика в силах справиться с ней.
Пожалуй, то, что теория о нечеткой логике получила всемирное признание, является заслугой Лотфи Заде. Благодаря Заде нечеткая логика с каждым годом привлекает все большее число исследователей из разных научных областей. В настоящее время нечеткой логикой во всем мире занимаются тысячи ученых и инженеров, по этой тематике опубликованы сотни книг, десятки тысяч статей, издается более 40 научных журналов по нечеткой логике и мягким вычислениям, механизмы нечеткой логики реализованы в сотнях прикладных систем.
В данной книге мы рассматриваем прошлое нечеткости, ее настоящее и будущее. Когда мы обращались к прошлому нечеткости, мы рассматривали исторические корни и происхождение нечеткости, начиная путь с логики Аристотеля. Изучая настоящее нечеткости, мы рассматриваем нечеткие множества и системы и то, как они получили признание в США и Японии. Будущее нечеткости предполагает то, каким образом нечеткая логика и высокопотенциальный интеллект машин может сказаться на жизни общества и повлиять на него в ближайшем и отдаленном будущем.
Двухвалентности присуще делать выбор в пользу простоты, нежели точности. Черное и белое, истина или ложность очень удобны для суждения в математике и компьютерном программировании. Но, как бы там ни было, двухвалентность требует вовлечения оттенков серого и округления на определенном этапе рассуждений: достаточно вспомнить вопрос о том, кто из присутствующих в аудитории был доволен своей работой.
Информационная эпоха опирается на двухвалентность, потому что она опирается на «цифровую революцию» в обработке сигналов и микропроцессорных компьютерных чипах. Мы измеряем величины – звук, кровяное давление, интенсивность света, напряжение, температуру, интенсивность землетрясений – которые со временем плавно меняются. Мы должны пробовать округлять эти сигналы для того, чтобы передать их двоичному компьютерному интеллекту.
Мы можем рассматривать временной сигнал как кривую, колеблющуюся вверх и вниз, влево и вправо.
Ученые написали тысячи работ о том, как же изображать временную кривую, результатом явилось то, что чем больше отрезков времени возможно отобразить на кривой – тем лучше и информативнее. Оцифровка разрезает вертикальную линию на набор чисел. Здесь система округляет сигнал до ближайшего нарезанного значения. Затем система отбрасывает реальность и сохраняет только оцифрованные числа (черные точки в сетке) и преобразует каждое число в уникальный список. Остальное – это высокоскоростное число и мир компактных лазерных дисков, сотовых телефонов, факсимильных аппаратов, спецэффектов в фильмах и новых изображений Нептуна и Венеры.
Западная культура теперь видит двоичную, бинарную точность как часть научного метода. Цифровая революция словно оцифровывает наши умы. Представьте себе компьютер, который на какой-либо заданный ему вопрос дал бы ответ: более или менее. Скорее всего в данном случае мы бы решили, что компьютер просто-напросто запрограммирован ученым в белом халате таким образом, чтобы он мог разговаривать с нами равносильно тому, как общаются друг с другом люди. Мы бы точно не подумали, что компьютер действительно имеет в виду то, что он дал нам верный, на его взгляд, ответ на заданный нами вопрос.