Космологи проводят аналогию с горизонтом на Земле. Если вы стоите на спасательном плоту посреди океана, то из-за кривизны нашей планеты можете видеть вдаль примерно на пять километров. Если к вам приближаются два корабля — один с севера, другой с юга, — сначала вы видите верхушки их мачт, и по мере того, как они становятся ближе, их корпуса медленно поднимаются над вашим горизонтом. Что касается моряков на кораблях, то сначала они видят вашу макушку, а затем постепенно и остальные части фигуры. Но в момент, когда они впервые вас замечают, моряки на одном корабле не могут видеть другой корабль: когда вы находитесь прямо на их горизонте, другой корабль все еще находится за ним. Мы похожи на этого потерпевшего кораблекрушение человека, а две диаметрально противоположные галактики похожи на тех моряков. Мы видим галактики, которые даже не видят друг друга, не говоря уже об обмене энергией или веществом, который мог бы сделать их внешний вид одинаковым. Фоновое излучение должно быть скорее пестрым лоскутным одеялом, а не равномерным свечением. «Чрезвычайно трудно объяснить, почему небо не испещрено пятнами… — говорит Мизнер. — Наблюдения показали согласованность у объектов, у которых никогда не было физической возможности взаимодействовать друг с другом».
В этой ситуации опять чувствуется определенное дежавю. Отдаленные части Вселенной согласовали свои свойства, явно нарушив предел скорости, установленный светом. Это выглядит так же жутко, как то, что Гальвез видит в своей лаборатории, за исключением того, что теперь мы говорим о целых галактиках, а не о маленьких частицах. В 1970 г. российский теоретик Яков Зельдовичосмелился предположить, что некий тип квантовой нелокальности мог бы объяснить однородность космоса. Однако в целом космологи отказывались заходить так далеко. Большинство восприняло эту загадку как провал теории гравитации Эйнштейна и полагало, что разгадка появится не раньше, чем произойдет объединение физики. Другими словами, Мизнер говорит: «Никто не думал, что уравнениям Эйнштейна можно было доверять в таких экстремальных случаях».
В конце 1970-х гг. русские и американские физики додумались, как решить проблему горизонта, не отказываясь ни от локальности, ни от теории Эйнштейна. Идея состоит в том, что эти две галактики на противоположных сторонах нашего неба (или на самом деле их предшественники) фактически когда-то находились рядом, но их оттащило друг от друга, когда Вселенная переживала свой ранний скачок роста. Таким образом, некий процесс мог бы сделать их похожими. Как близнецы, разлученные при рождении и выросшие, даже не зная о существовании друг друга, галактики когда-то ютились рядом, но развивались независимо друг от друга и только теперь снова воссоединяются.
Чтобы это объяснение имело смысл, скачок роста должен был растаскивать галактики со скоростью, превышающей скорость света, так, чтобы они потеряли контакт друг с другом до настоящего момента. Обычно слова «со скоростью, превышающей скорость света» звучат для физиков как скрип ногтей по меловой доске. Но рост космоса обходит обычные ограничения на скорость перемещения, потому что ни о каком перемещении речи не идет. Скорее это новое пространство образуется в промежутках между галактиками, почти как животное или растение развивается, создавая новые клетки. Поскольку галактики фактически не перемещаются в пространстве, ограничение скорости к ним не относится. «Если вы смотрите на две галактики, они остаются на месте, но расстояние между ними меняется, — объясняет Мизнер. — Если считать это относительной скоростью, то в ранний период относительная скорость двух скоплений вещества сильно превышала скорость света. Таким образом, они не могли видеть друг друга». Это не единственная ситуация, в которой можно превысить максимальную скорость за счет роста вместо перемещения. Предположим, вы находитесь на большой танцевальной вечеринке, и все начинают выстраиваться в линию для танца конга. Если несколько десятков человек будут присоединяться к ней каждую секунду, то концы линии могут удаляться друг от друга со скоростью больше 90 км/ч, хотя ни один человек не способен перемещаться так быстро.
Расстояние между галактиками может увеличиваться со скоростью больше, чем скорость света, даже тогда, когда Вселенная расширяется в обычном темпе. Однако в таком случае скорость расширения со временем снижается, и галактики в конце концов снова могут контактировать. Скачок роста необходим, чтобы галактики могли родиться вместе, а затем потерять контакт.
Большинство космологов считают эту концепцию, известную под названием «инфляция», столь изящной и убедительной, что обычно преподносят ее так, будто это установленный факт. В 2014 г. команда наблюдателей объявила, что они обнаружили верные признаки следов инфляции в микроволновом излучении[9]: возмущения, связанные с механизмом скачка роста. Комментаторы были осторожны и использовали стандартные оговорки («если это правда»), но явно сочли этот результат реальным — они так долго ожидали его. Тем не менее открытие обернулось пшиком несколько месяцев спустя, вновь разжигая сомнения, которые высказывали даже некоторые из авторов теории инфляции. Основное беспокойство вызывает то, что инфляционная теория предполагает наличие того самого условия, которое она должна порождать: чтобы Вселенная начала расширяться, она уже должна была быть неестественно однородной. Поэтому некоторые физики искали альтернативы инфляции, среди которых была не только видимость нелокальности, но и настоящая нелокальность.
Один из скептиков инфляции — это Фотини Маркопоулоу. Я познакомился с ней на конференции в честь Уилера, где она поделила первое место в конкурсе подающих надежды физиков. Меня поразило ее мнение о том, что физические теории должны исходить из того, что мы — часть Вселенной, а не сторонние наблюдатели. «Меня реально интересует одно — это идея о том, что вы находитесь внутри Вселенной, которую пытаетесь понять, и можете понять ее, — говорит она мне. — Есть любопытная взаимосвязь между тем, что вы находитесь внутри системы, которую пытаетесь изучить, и тем, что вы способны делать вид, что это не так. В каком-то смысле к этому и сводится наука». Все области науки чувствуют это противоречие между взглядом изнутри и извне, но хуже всего оно в космологии, единственной сфере науки, изучающей систему, у которой вообще нет внешней стороны.
Маркопоулоу говорит, что глобальная картина мира увлекала ее с ранних лет. «Ребенком я любила заходить в церковь, когда там было пусто, садиться и просто смотреть в потолок, — вспоминает она. — В греческих православных церквях он, в сущности, похож на планетарий. Там на потолке картины на тему космологии. Именно это всегда казалось мне захватывающим. Есть что-то поразительное в том, что человек пытается представить целостную картину того, чему он сам принадлежит». Было бы легко напрямую связать ее детское изумление с карьерой физика, но Маркопоулоу против такого удобного изложения событий. Кроме этого она любила искусство — ее родители были скульпторами, — а также археологию и архитектуру. Она не знала, какую специализацию указать в заявлении о приеме в колледж. Когда директор ее средней школы предложил теоретическую физику, Маркопоулоу указала теоретическую физику. В колледже один из друзей восторженно отзывался о курсе лекций по квантовой механике, и оказалось, что это как раз по пути домой, так что она зашла послушать. «Я не читала книг об Эйнштейне и решила продолжить с того места, на котором Эйнштейн остановился, — говорит она. — В итоге на разных этапах, когда приходилось определяться, куда пойти, я выбирала теоретическую физику».
Похожим образом она не сразу выбрала свой предмет: объединение квантовой теории и теории гравитации с целью создания квантовой теории гравитации. Вместо этого, будучи студенткой и в первый год аспирантуры, Маркопоулоу изучала физику элементарных частиц. Однако курсовая работа оставила у нее чувство неудовлетворенности. «Странно, когда в программе подготовки физиков изучению квантовой теории уделяется недостаточно внимания», — вспоминает она. Ее однокурсники и преподаватели отвергали объединение как несбыточную мечту, да и ей самой поначалу тоже так казалось. Через некоторое время, впрочем, она стала думать, что мечтать — это нормально. Хотя ответы на загадки космоса могли быть недосягаемыми для физиков, по крайней мере исследователи квантовой гравитации стремились найти их. «Когда вы задаете интересные вопросы вроде “Почемуэто так?”… всегда кажется, что на самом деле не следовало их задавать, — говорит Маркопоулоу. — Люди, которые работали над этими интересными вопросами, занимались квантовой гравитацией». В конце концов соблазн стал слишком велик, чтобы сопротивляться. Если Гиддингс стремился объединить физику через теорию струн, то Маркопоулоу примкнула к сообществу физиков, которые применяют альтернативные подходы, чтобы примирить гравитацию с квантовой теорией. В отличие от струнных теоретиков, эта группа не стремится объединить строго всю физику, с ее огромным разнообразием частиц и взаимодействий, а концентрируется на гравитации.
Маркопоулоу сделала имя на том, что изучила, подчиняются ли различные предлагаемые квантовые теории гравитации принципу локальности, и показала, что большинство из них ему не подчиняется. Принято считать, что такие аномалии должны быть заметны только на очень малых масштабах, даже меньших, чем атом, но Маркопоулоу сомневается, что нечто столь глубокое может быть ограничено такими узкими рамками. «С самого начала, когда я занялась квантовой гравитацией, интуиция подсказывала мне, что, возможно, квантовая гравитация на самом деле проявляет себя на больших масштабах, поскольку меняется нечто фундаментальное», — говорит она. Маркопоулоу подозревает, что согласованность развития удаленных галактик может быть таким проявлением. Единообразие космоса может быть третьим типом нелокальности, очень явным. Несколько струнных теоретиков думают примерно так же. «Проблема горизонта — это нелокальность, находящаяся прямо у нас под носом», — говорит Маркопоулоу.