Никола Тесла. Человек, опередивший время — страница 8 из 31

.


До сих пор вызывает восхищение разнообразие интересов изобретателя. Так, в его неповторяющихся демонстрациях можно было встретить, по терминологии Теслы, «сияющие перистые кисти электрических разрядов в вакуумированном баллоне». Сейчас мы это называем свечением канала пучка электронов в плазме ионизированных атомов газа электронной лампы. В других опытах угадывались принципы действия бетатрона — ускорителя электронов. При этом Тесла вплотную подошел к созданию циклотрона, разгоняющего изолированные атомы электричества до невообразимых скоростей. В числе других гениальных задумок изобретателя можно найти описание космических лучей, радиоэлектронные лампы, рентгеновское излучение, полученное задолго до Рентгена, плазмохимические приборы, ну и конечно же, разнообразнейшие флуоресцентные лампы.

На своих демонстрациях изобретатель больше всего говорил о загадочном очаровании электричества и магнетизма:

— Их сущность кажется двойственной, уникальной по сравнению с другими силами природы, а их притяжение, отталкивание и вращение вызывает интригующие и возбуждающие умственное воображение мысли…

Больше всего Тесла гордился своей беспроводной и безэлектродной газоразрядной лампой. Он любил демонстрировать окружающим передвижение таких ламп в любые уголки помещения, шокируя зрителей тем, что лампы продолжали гореть. Тесла никогда не пытался найти лампам коммерческое применение, однако их все еще продолжают исследовать и до сих пор на них получают патенты!

В своих демонстрационных лекциях Тесла никогда не забывал упомянуть своих предшественников, начиная с Фарадея и Максвелла. Демонстрируя разнообразные вакуумные баллоны и колбы, он всегда отмечал, что обязан Уильяму Круксу, который в 1870 году сконструировал электронную лампу с двумя парами электродов внутри. Конечно, больше всего внимания изобретатель уделял эффектам, достигаемым благодаря переменным токам высокой частоты и высокого напряжения:

«Мы наблюдаем, как проявляется энергия переменного тока, проходящего по проводу, — не столько в проводах, сколько в окружающем пространстве, — довольно удивительным образом принимая свойства тепла, света, механической энергии и, что поражает более всего, даже химического сродства…

— Вот подключенная лампочка, подвешенная на проводе… Я сжимаю ее, и выступающая платиновая пуговка сильно раскаляется…

А здесь другая лампа, присоединенная к подводящему напряжение проводу. Если я дотрагиваюсь до ее металлического цоколя, она заполняется интересным многоцветным фосфоресцирующим сиянием…»


Разряды из катушек Теслы.


В последнее время многие энтузиасты пытаются восстановить показательные эксперименты великого изобретателя.

«Вот я стою на изолированной платформе и привожу свое тело в контакт с одним концом вторичной обмотки электрического реактора… И вы видите потоки света, пробивающиеся с его дальнего конца, который приведен в состояние сильной вибрации…

Еще раз я присоединяю эти две пластины из металлической сетки к концам обмотки электрического реактора, и вы видите великолепный разряд, принимающий форму сияющих потоков света».

Тесла всегда подчеркивал, что большинство его изобретений родилось с помощью его незаменимого электрического реактора переменного поля разрядов. Любопытно, но изобретатель никогда не давал детальную схему действия своего «реактора», мотивируя это тем, что с его помощью можно подойти к созданию «лучей смерти».

Главный образ, который Тесла постоянно преподносил своим слушателям в качестве исчерпывающего объяснения всех своих поразительных опытов, был прост, но таинственен: «Это все, — как говорил исследователь, — наполненный энергией светоносный электрический эфир».

Например, он демонстрировал двигатель на одном электропроводе, второй контакт был присоединен к «эфирному пространству», при этом изобретатель рассказывал о создании электропланов с двигателями, работающими совершенно без проводов. А однажды он презентовал аудитории проект своего ракетоплана-ионолета, черпающего энергию прямо из «глубин космоса»:

«Вполне возможно, что такие беспроводные электродвигатели, как их можно называть, могут заряжаться энергией на значительных расстояниях благодаря электропроводности разреженного воздуха. Переменный ток, особенно высокочастотный, с поразительной легкостью проходит даже через чуть разреженный газ. А ведь вверху воздух разрежен. Чтобы подняться на несколько миль в космос, конечно, требуется преодолеть некоторые трудности — преимущественно механической природы. Нет сомнения, что благодаря высоким частотам и масляной изоляции светящиеся электрические разряды могут распространяться на многие мили в разреженном воздухе. И путем такой передачи электричества через огромные расстояния двигателями мощностью в несколько сотен лошадиных сил или лампами можно управлять из стационарного источника…

У нас не будет необходимости передавать энергию таким способом. Нам совсем не надо будет передавать энергию. Еще до того как минует несколько поколений, наши механизмы будут приводиться в движение силой, доступной в любой точке Вселенной. Эта идея не нова… Мы встречаем ее в чудесном мифе об Антее, который получал энергию от земли; мы встречаем ее среди глубоких рассуждений одного из ваших блестящих математиков… Во всем космосе есть энергия. Кинетическая это энергия или статическая? Если она статическая, то наши надежды напрасны; если кинетическая и мы знаем, что так оно и есть, то это просто вопрос времени, когда люди смогут подключать свою технику к механизму природы…»


Патентная схема системы передачи электрической энергии: D, D1 —антенны-излучатели; В — антенный провод; А, А1 — внутренняя катушка; С, С1 — внешний контур; G — ползунковые контакты; L — ламповая нагрузка; М — механическая нагрузка.


Патентная схема аппарата для передачи электрической энергии, составлявшего основу проекта «Ворденклиф»: Р, D, V — элементы внешнего излучателя; F, Y, D, B1 — конструкция мачты; B — катушка индуктивности; F1 — резонансный трансформатор; А — внутренняя обмотка; С — внешняя обмотка; G — конденсатор; Е — заземление.


Проследить деятельность Теслы в этот период просто невозможно. Кажется, будто он одновременно присутствует везде, работая в нескольких перекликающихся и взаимосвязанных областях, но всегда с электричеством — таинственной материей, основой его исследований. Для него электричество было скорее жидкостью с трансцендентными силами, которые «снисходят» до подчинения физическим законам, но никак не потоком дискретных частиц (или волновых пакетов), послушных законам механики, как это принято в современной теории.


Патентная схема утилизации потока электрической энергии излучения: Р — приемная антенна; T, Т1, d, R- элементы контура; P1 — заземление; С — конденсатор; а, b, М — элементы реле; В — питание реле; Р, s — обмотки трансформатора; k, S — излучатель.


Патентная схема Теслы беспроводной передачи электрических сигналов: D1, D2, d1, d2, d3, d4, d5 — антенны; S1, S2, S3, S4, S5, P1, P2, P3 — катушки индуктивности; С — емкость; R — сопротивление; L — индуктивность.


В это же время изобретатель продолжал совершенствовать свои генераторы переменного тока, выпуская их с известным промышленником Вестингаузом на совместном предприятии «Вестингауз Электрик». Тесла также продолжал вести яростную идеологическую войну со сторонниками постоянного тока, возглавляемыми Эдисоном, и разрабатывать уникальные радиоуправляемые модели транспортных средств. Он постоянно участвовал в работе различных форумов и выставок, где его экспозиция с действующими приборами и оборудованием производила фурор.

Магия эфира

Я считаю, что квантовая механика далека от совершенства. Я верю в это, потому что не видел еще интерпретации квантовой механики, которая имела бы какой-то смысл.

Я тщательно изучил большую часть предложенных интерпретаций, много над ними размышлял и все равно внятнее квантовая теория для меня не стала. Кроме того, проблема измерений кажется мне нерешаемой в рамках современной физики. Следовательно, квантовая механика — это приближенное описание более фундаментальной физической теории…

Но как же нам описывать физику, если мы откажемся от терминологии физических тел, движущихся в фиксированном пространстве-времени? Эйнштейн бился над этим всю жизнь и в конце концов нащупал правильный путь: фундаментальная физика должна быть дискретна и ее описание должно быть сделано на языке алгебры и комбинаторики.

Ли Смолин. Три пути к квантовой гравитации

Мир существует независимо от нашего сознания. Ему нет никакого дела до того, как мы, часть этого мира, представляем себе внутренние механизмы его внешних проявлений. Это важно только для нас самих. Все дело в другом: как далеко мы можем продвинуться на этом пути? И до каких пор сможем уточнять наши представления о причинах наблюдаемых явлений? Вместо вопроса о физической реальности мы должны решить вопрос о границах научного метода, который после изобретения квантовой механики стал особенно актуален.

Л. И. Пономарёв. Под знаком кванта


В глубинах мира квантов.


Ранней осенью 1899 года Тесла вернулся в Нью-Йорк с огромным запасом новых наблюдений, множеством фотографий невиданных в лабораторных условиях разрядов и, как он думал, замечательным открытием «геомагнитных стоячих волн» и «электроэфирных миражей». Как только он рассказал о некоторых из своих открытий знакомым, те, пораженные необычными результатами, сразу же стали настойчиво рекомендовать опубликовать научную статью, обосновывающую возможность осуществления передачи электроэнергии без проводов через Землю на любые расстояния. Так в журнале «Эпоха», редактором которого был друг Теслы Джонсон, в июньском номере за 1900 год появился обширный обзор «Проблема увеличения запасов энергии человечества, со специальными рекомендациями по использованию энергии Солнца».