Петр ОбразцовНикола Тесла: ложь и правда о великом изобретателе
Автор выражает большую и сердечную благодарность доктору физико-математических наук Андрею Лундину за помощь в подготовке книги.
Предисловие
В начале XXI века интерес публики сместился от неопознанных летающих тарелок, девочки-рентген и водопроводной воды, заряженной тибетскими мудрецами в состоянии сомати, к личности великого сербско-американского изобретателя электротехнических устройств — Николе Тесле.
С прилавков сметались переводные книги о жизни и фантастических изобретениях Теслы, появились страшненькие статьи в маргинальных изданиях, вышел телефильм про невероятные эксперименты короля электричества.
Вспомнили и про относительно недавнее обращение депутатов Государственной думы с требованием разобраться с американской системой «нагрева ионосферы» на Аляске, которая построена якобы на основании идей Теслы.
На десятках интернет-сайтов ведется обсуждение великих несуществующих открытий ученого, возникла своего рода тесламания. Больше всего обсуждается вопрос о роли Теслы в создании так называемого геофизического оружия, а именно разработки системы передачи огромных количеств энергий в ионосферу Земли с целью вызвать ужасающие последствия для противника.
В качестве возможного примера реализации этой схемы авторы ужастиков приводят американскую станцию HAARP на Аляске, о которой мы подробно расскажем в этой книге, хотя уже сейчас, в предисловии, сообщим читателю, что все это чушь собачья, да и Тесла к этому не имеет никакого отношения, будучи не только великим изобретателем, но и фантазером.
В общем, новый Леонардо да Винчи пополам с Нострадамусом явился. О Нострадамусе, кстати, мы также кое-чего скажем. Как-то жаль ничего не сообщить читателям об этом великом шарлатане, которого так любят современные недоучки, жаждущие и даже алчущие немножко денежек за пропаганду бредней этого, строго говоря, вполне сумасшедшего лекаря.
В этой книге мы прежде всего постараемся рассказать о подлинных и воображаемых изобретениях и открытиях Николы Теслы, о его жизни и смерти, о шпионских страстях и дурости публики, с удовольствием внимающей дурацким рассуждениям невежественных журналистов.
Сразу скажем, что книга не является «разоблачением» великого изобретателя, который действительно открыл несколько новых физических явлений и, безусловно, является одним из величайших изобретателей, а может быть, даже и великих ученых позапрошлого века.
В книге мы попытаемся лишь отделить фантастику от реальности. К сожалению, к смешению этих понятий по отношению к своему творчеству причастен и сам эксцентричный Никола Тесла. Льстящее «патриотам» славянское происхождение Теслы в данном случае лишь подчеркивает умозрительность множества его вселенских откровений — наш брат славянин по сию пору остается язычником и тайно верит в Перуна или как там у них в Югославии называют старшего бога.
Характер великого ученого относился к тому типу, который можно было бы назвать комплексным или противоречивым. Тесла был трудолюбив, талантлив, умел полностью погружаться в чисто научные проблемы, презирал прагматизм и легко отказывался от денег — он и стал первым и выдающимся шоуменом от науки, гением саморекламы, фантазером и даже мистификатором, а также с легкостью занимал деньги и получал кредиты, которые совершенно не собирался отдавать.
Поэтому переставим ударение в слове «комплексный» на второй слог, как учила меня великий преподаватель математики Лидия Ивановна Головина. Она имела в виду комплексные числа и подчеркивала, что комплексными бывают только бригады. Тогда, при социализме, были такие бригады, которые делали работу «под ключ» — разумеется, только на бумаге.
А комплексные числа состоят из действительной и мнимой части. Мнимая часть представляет собой математическое выражение с использованием корня квадратного из минус единицы, чего. конечно, не может быть, так как нет такого (действительного) числа, квадрат которого равен минус единице. Вот и у Теслы была действительная и мнимая часть, подлинные великие изобретения и толстая пачка нереализуемых фантастических патентов.
Часть перваяДЕЙСТВИТЕЛЬНАЯ
Глава 1История молнии
Рассказ об изобретениях Теслы не может обойтись хотя бы без краткого изложения истории электричества. В старом анекдоте учитель спрашивает нерадивого Васю, что это такое, а тот, наморщив лоб, отвечает: «Знал, но забыл», «Вспомни, несчастный! — вскрикивает преподаватель. — Один во всем мире человек знал, что такое электричество, и тот забыл!»
Анекдот не слишком далек от правды — полностью в явлении «электричество» человечество не разобралось и до сих пор. Использовать умеем, эксплуатируем таинственное явление природы и в хвост и в гриву, жжем киловатты на миллиарды рублей и долларов, во имя электричества губим шахтеров под землей и мирных поселян вокруг атомных электростанций, затапливаем миллионы гектаров водохранилищами ГЭС и отравляем воздух сернистым газом на ГРЭС, а толком объяснить природу явления не можем. Работает, и ладно. (Кстати, все ли могут расшифровать аббревиатуру ГРЭС? Удивительным образом никакого сходства с ГЭС — гидроэлектростанцией. ГРЭС — это государственная районная электростанция, работающая не на энергии падающей воды, а благодаря сжиганию топлива)
Но историю электричества в общих чертах знаем. Считается, что древнегреческий любомудр Фалес Милетский еще в VI веке до н. э. потер янтарь шерстяной тряпкой, и к этой окаменевшей смоле потом притягивались обрывки бумаги. Разумеется, это чепуха. Первым о собственную шкуру потер кусок янтаря неандертальский вождь и естествоиспытатель Йырх Неуловимый, и никакой бумаги в Древней Греции еще не было. Но верно, что само слово «электричество» произошло от греческого «электрон», т. е. янтарь. К легенде о Фалесе приложил руку и Тесла, написавший «Сказание об электричестве» и в поэтической форме пересказавший нам байку о Фаэтоне, Фебе, Гелиаде и прочей древнегреческой шушере. Любопытно, что Фалес так задурил голову древнеримским грекам и прочим народностям Евразии, что до XVII века н. э. никто не пытался поэкспериментировать с другими природными объектами, обладающими свойством наэлектризовываться.
И только в начале того века придворный врач Елизаветы 1 и Якова I англичанин Уильям Гильберт тер шерстью уже три десятка разных драгоценных и полудрагоценных камней, кусков металлов, костей животных (и людей, между прочим) и разделил все исследованные им природные объекты на электризуемые и неэлектризуемые. Черепушки казненных в Тауэре оказались электризуемыми, что навело на мысль Отто фон Герике несколько позже изготовить «голову» из плавленой серы, насаженной, как головы казненных, на медную ось. Если при вращении голова терлась о камзол, то к ней потом притягивалась или от нее отталкивалась всякая мишура.
Далее в течение лет ста никаких особых открытий в области электричества сделано не было, зато в 1729 году профессор Питер ван Мушенбрек из Лейдена подсоединился серебряной цепочкой к такому же шару, но стеклянному, а другой конец опустил в банку с водой, намереваясь получить полезную для здоровья электрическую воду. Сейчас мы понимаем, что он перегнал в банку довольно значительное количество статического электричества, и неудивительно, что когда он отсоединился от шара и сунул в банку руку, как известный грека в реку, то получил изрядный удар током. Такую банку стали называть лейденской, однако потом присвоили это название стеклянному цилиндру, обернутому снаружи и внутри оловянной фольгой. Причем Мушенбрек к этой непростой конструкции никакого отношения не имел, а вот поди ж ты — его считают изобретателем этого сосуда с электричеством. Лейденские банки стали очень модными, ими развлекались при дворах европейских монархов, а алхимики стали использовать банки для получения философского камня. Впрочем, безуспешно. Напомним, что все эти игры проводились со статическим электричеством, до электротока было еще далеко.
Потом за дело взялся великий американец Бенджамин Франклин, известный россиянам больше не как один из основателей США и физик, а как персонаж на стодолларовой банкноте. Франклин разделил статическое электричество на положительное и отрицательное, а также изучал атмосферное электричество. Аналогичные опыты в России, где известно, как все делалось, привели к гибели ученого Рихмана от удара молнии, которую он додумался по проводу завести прямо в лабораторию. Вот ведь, немец, а туда же — так почва влияет на судьбу даже иноземца Первый в мире источник постоянного тока придумал итальянец Алессандро Вольта. До этого другой макаронник Луиджи Гальвани весь 1791 год мучил лягушек, тыкая в них спицами из меди и железа. О появлении электричества он узнавал, облизывая противоположные концы спиц — точно так же, как советские школьники пробовали плоские батарейки на язык. Гальвани решил, что дело в животном электричестве, Вольта же сообразил, что живая лягушка здесь ни при чем, а нужна просто любая электропроводящая жидкость между разнородными металлами, и построил вольтов столб из положенных друг на друга медных и цинковых кружочков, проложенных войлоком. Вся эта колбаска помещалась в кислый раствор (винного уксуса или соляной кислоты), который пропитывал войлок, и с крайних кружков можно было через проволочки снимать настолько большое количество электричества, что вскоре, сближая проволочки, Вольта увидел мощную искру между ними. Несколько усовершенствовав свой столб и воспользовавшись другими электродами, он открыл вольтову дугу, которую в период советской борьбы с космополитизмом (конец 40-х годов прошлого века) справедливо назвали дугой Петрова — петербургского академика, примерно в то же время наблюдавшего дугу между угольными стержнями, но не раззвонившего об этом по всему миру. Алессандро же Вольта не стеснялся демонстрировать свои изобретения перед сильными мира сего и получил от Наполеона графский титул. Да, вот еще — экспериментируя с различными металлами при изготовлении своего столба, Вольта построил их в определенный порядок, названный рядом напряжений. В этом ряду, чем дальше друг от друга стоят металлы, тем ток будет больше.
Ряд напряжений с не очень большими изменениями продолжают использовать и в настоящее время. Именем Вольта названа единица напряжения — вольт. Последнюю «а» зачем-то отбросили. А если бы вовремя подсуетился Петров? Она что, стала бы называться «петро»? Украинцы, ясное дело, были бы довольны, но «сеть на 220 петро» как-то не звучит.
Пафосно говоря, именно вольтов столб возвестил о новой эпохе в истории человечества — эпохе электричества. Дальше дело пошло быстрее, уже в 1820 году Эрстед описал отклонение магнитной стрелки вблизи провода с текущим по нему электрическим током, а немного позднее Био, Савар и Лаплас облекли эти наблюдения в скучные физические формулы. Вскоре свои эксперименты начал Ампер, обнаруживший и доказавший наличие безусловной связи двух явлений — электричества и магнетизма, и предложивший рассматривать их совместно под названием электромагнетизма. Сначала ему как-то не поверили, но потом Майкл Фарадей сумел превратить электрическую и магнитную энергию в механическую, а через лет десять решил и обратную задачу — превратил механическую энергию в электрическую (то самое, что делается на ГЭС, когда водопад крутит ротор генератора). В конце 1831 года Фарадей сообщил об открытии электромагнитной индукции (появление электрического тока в контуре, находящемся в переменном магнитном поле или движущемся в постоянном магнитном поле), которая составляет основу современной электротехники. Тут же были изобретены первые электромагнитные генераторы и электродвигатели.
В литературе имеется рассказ о том, как Фарадей получил по почте письмо с описанием электрического генератора, подписанное только латинскими инициалами R и М. Проект был очень хорош, и благородный Фарадей переправил письмо в научный журнал с собственными хвалебными комментариями. Легенда гласит, что таинственный R. М. так и не пожелал раскрыть свое имя, и мы до сих пор так и не знаем, кто на самом деле был изобретателем первого электромагнитного генератора, причем переменного тока. Историки провели тщательные розыски, но так ничего и не обнаружили.
Это странно. Совершенно ясно, что всю эту мистификацию придумал сам Фарадей, к тому времени слегка запутавшийся в вопросах приоритета на различные электрические прибамбасы со своим бывшим начальником Дэви. Подписываться своим именем ему было тогда неудобно, и если что и стоило бы сделать историкам естествознания, так это выяснить, что именно имел в виду Фарадей под литерой R; что М означает Майкл — это не требует специальных доказательств. На R начинается много английских слов, имеющих отношение к изобретательству. Наша гипотеза — researcher (исследователь). Вполне изящно — исследователь Майкл.
Генератор переменного тока не мог быть использован для изобретенных уже тогда электролиза, телеграфа, в дуговых лампах для освещения. Необходимо было устройство для преобразования переменного тока в постоянный, и вскоре оно появилось под названием коллектора, а по-русски — выпрямителя. В 1870 году Грамм придумал кольцевую обмотку якоря динамо-машины (генератора постоянного тока), и генераторы стали вырабатывать ток определенного напряжения без скачков выше-ниже, а на Венской промышленной выставке в 1873 году (Тесле уже 17 лет, он учится в Карлштадтском Высшем реальном училище) была случайно, одним любопытным посетителем, обнаружена обратимость машины Грамма — при вращении якоря появлялся электрический ток, а при протекании тока через якорь получался электродвигатель, быстро вращавший наколотый на ось коробок шведских спичек.
Вскоре произошло кардинальное улучшение дуговых ламп. Удивительно, но до нашего Яблочкова никто не догадался расположить электроды для получения дуги не горизонтально, друг напротив друга, а вертикально. При горизонтальном расположении постепенно сгорающих электродов их приходилось все время приближать друг к другу с помощью специального приспособления, и в основном вручную. А вертикально расположенные рядом электроды сгорали постепенно сверху вниз, не требуя подкрутки. Необходимо было только догадаться до состава изолятора между электродами, который тоже сгорал бы вместе с электродами, но до того продолжал изолировать электроды друг от друга. Впрочем, возникла и другая проблема — положительный анод сгорал заметно быстрее отрицательного катода, и Яблочков догадался, что в данном случае уместно использовать переменный ток, который будет время от времени изменять знак каждого из электродов на противоположный. И специально для питания «свечей Яблочкова» генератор такого тока был создан. Главной задачей электротехников стало решение проблемы передачи тока на значительные расстояния — ведь электроэнергию производили на ГЭС или вблизи месторождений угля, а потребляли вдали от них в городах.
Передача тока на значительные расстояния стала камнем преткновения для развития электротехники. Электрический ток передавали тогда по довольно тонким проводам и малого напряжения, лишь повышение этого напряжения со 100 вольт до 6000 вольт позволило Марселю Депре передать электроэнергию на почти 60 км, причем с неплохим коэффициентом полезного действия — 40 % Если бы удалось передавать ток с напряжением 20–30 тысяч вольт, задача была бы решена, однако генераторы постоянного тока в принципе не были на это способны. Оставалось лишь производить переменный ток низкого напряжения, затем повышать до требуемой величины, передавать на большие расстояния, а на месте снова снижать до реально используемого. Но как этот ток использовать, если устройств, прежде всего электродвигателей переменного тока, просто не существовало? При этом важно обратить внимание, что именно электродвигатели в те времена были основными потребителями электрического тока, они крутили станки на заводах и колеса различных транспортных средств. Так что задача сформулировалась сама собой — нужен электродвигатель переменного тока.
А не придумали ли что-нибудь похожее ранее? Да, кое-что было. Был знаменитый недооцененный опыт Араго, когда он демонстрировал вращение медного диска, вращая вблизи него магнит. Важно, что медь не является магнитным материалом, а тем не менее крутится. Появляется идея заменить магнит его «эфирным» аналогом — магнитным полем, и попробовать повторить вращение медного диска без вращения самого «материального» магнита. Причем использовать надо обязательно переменный ток. Эту задачу пытались решить и изобретатель передачи постоянного тока на большие расстояния Депре, и менее известные сейчас Брэдли и Йонас Венстрём (последний, кстати, одним из первых придумал трехфазные генераторы).
И тут-то настало время великого, а может быть, и гениального изобретателя Николы Теслы. Во время прогулки по Будапешту и цитирования любимого Гёте его озарило и он с ходу решил проблему и даже нарисовал принципиальную схему электродвигателя на переменном токе палкой на песке. Вращающееся магнитное поле было открыто и сразу же могло начать работать на человечество.
Глава 2Битва электрических токов
Уже вскоре после ухода Теслы из компании Эдисона между ними началось противоборство, которое получило название «войны электрических токов» — Эдисон стремился обеспечить Америку и весь мир постоянным током, а Тесла — переменным. Решающие сражения происходили в 1888 году, когда Тесла уже работал на Вестингауза, а Эдисон по-прежнему возглавлял компанию имени себя. Посвятим этому ничуть не менее великому, чем Тесла, изобретателю несколько абзацев.
Томас Алва Эдисон родился в 1847 году (он старше Теслы на 9 лет) в семье голландских эмигрантов, проживавших в г. Майлан (США, штат Огайо). Отец будущего изобретателя владел небольшой фабрикой по производству кровельных материалов — щепы и дранки, а мать преподавала несколько предметов в школе. Однако учиться Томас начал не в мамином классе, а в школе г. Порт-Гурон (штат Мичиган). Ученье в школе длилось недолго, так как учитель считал его полным тупицей, мечтателем и бездельником, и мальчика забрали домой, где его образованием профессионально занялась мать. Томас много читал, конструировал различные устройства, а в возрасте 12 лет начал продавать газеты и коржики в поездах, связывающих Порт-Гурон с Детройтом. Постоянно бывая на вокзалах, он выучился на телеграфиста, а в 1868 году получил свой первый патент на электросчетчик для избирательных участков. Затем изобрел приставку к телеграфному аппарату, позволяющую передавать по проводам сведения о курсах акций на бирже. Он продал патент на приставку за 40 тысяч долларов и в городке Нью-Арк (неподалеку от Нью-Йорка, но уже в другом штате, Нью-Джерси) построил мастерскую по изготовлению телеграфных аппаратов и электроприборов. В 1875 году ему удалось значительно усовершенствовать телеграф, а потом и открыть явление термоэлектронной эмиссии (испускание электронов нагретыми телами, эффект Эдисона). До сих пор это явление используется в электровакуумных приборах.
В 1876 году он создал свою знаменитую лабораторию в местечке Менло-Парк, в том же штате, Нью-Джерси. Здесь он вскоре усовершенствовал микрофон телефона Белла, разработал измеритель интенсивности солнечного излучения и, наконец, сделал свое величайшее изобретение — фонограф. Как ни странно, ему пришлось объяснять публике, что фонограф можно использовать для совершенно различных целей — для записи не только голоса, но и музыки, для записи показаний в полицейских участках и прений сторон в суде и т. д. На публику наибольшее впечатление произвела именно запись показаний. Как пирожки, фонографы расхватывали юристы.
В возрасте 31 года Эдисон занялся проблемой электрического освещения и провел жуткое количество опытов в поисках материала для нити лампы накаливания. Как ни странно, наилучшим материалом оказался обугленный бамбук. В 1879 году первые лампы накаливания поступили в продажу, причем попутно Эдисон придумал патрон и цоколь. Он разработал мощный электрический генератор и использовал его на первой в мире нью-йоркской электростанции с большим числом ответвлений для освещения улиц, квартир и промышленных помещений. Являясь сторонником постоянного тока, он изобрел щелочной железо-никелевый аккумулятор, а также плавкий предохранитель, простой поворотный выключатель и усилитель звука — мегафон.
Эдисон был профессиональным изобретателем и готов был применять свой талант в самых различных областях. Так, в 1891 году он усовершенствовал киноаппарат и придумал кинетоскоп («быстрогляд») для демонстрации последовательных фотографий движущихся предметов, и в 1896 году показал в Нью-Йорке первый в Западном полушарии кинофильм (братья Люмьеры демонстрировали свой пионерский фильм в 1895 году). Соединив кинетоскоп с фонографом, он уже в 1913 году изобрел звуковое кино, тогда еще несовершенное, но за 25 лет до появления звука в современном понимании. В совершенно другой области, химии, он также сделал немало открытий — придумал способы получения синтетических лекарств и красителей, фенола и способ отгонки каменноугольной смолы для нужд пороховых заводов. Всего Эдисон получил около тысячи патентов, среди которых важное место занимают патенты на оригинальные схемы радиопередачи, электрооборудование и даже автомобили и летательные аппараты. На поле электричества он и столкнулся с Теслой, а умер раньше его на 12 лет, в 1931 году.
Теперь вернемся к противоборству двух великих электротехников. Как мы уже знаем, Тесла покинул Эдисона, категорически не желавшего иметь дело с переменным током. В 1888 году сотрудники Эдисона, инженеры Гарольд Браун и Фред Питерсен, получили разрешение работать в Менло-Парке над изучением воздействия переменного (да-да, переменного) тока на живые существа. Браун тогда уже собрал некоторую статистику о несчастных случаях со своими коллегами, занимающимися экспериментами с постоянным и переменным токами, и сделал вывод: хотя от постоянного тоже умирают, переменный ток намного опаснее. Понятно, что Эдисона более чем устраивало такое наблюдение. А Браун решил воспользоваться своими данными и использовать опасный переменный ток «во благо» — для приведения в исполнение смертной казни. Неожиданное, но совершенно логичное решение. Хотя другое его предложение заставляет задуматься об уровне нормальности этого инженера — он обещал тюремщикам лично приводить смертные приговоры в исполнение.
Этот Браун, который потом то ли был связан с Эдисоном контрактом, то ли нет, вскоре сконструировал электрический стул для пенитенциарных заведений ценой полторы тысячи долларов за штуку — сначала на постоянном (!) токе. Однако натурные эксперименты на бродячих собаках, которых он покупал по четвертаку за живую единицу, оказались не слишком удачными. Газета «Нью-Йорк таймс» сообщает, что Браун сначала ударил собаку током 300 вольт — та завизжала, но не умерла. Тогда Браун повысил напряжение до 1000 вольт, но и здесь его постигла неудача, собака забилась в конвульсиях, но убита не была. И лишь затем Браун, мысленно благодаря самого себя за проведенное статистическое исследование, подключился к переменному току с напряжением 300 вольт и убил собачку.
Этим методом немедленно воспользовались коммунальные службы Чикаго, Детройта и Сент-Луиса, а в штате Нью-Йорк даже было объявлено о вознаграждении за разработку наиболее гуманного, т. е. быстрого и без мучений, способа осуществления смертной казни. В специально созданную комиссию вошел и Браун, проталкивающий идею использования переменного тока. Опробовать эффективность генераторов фирмы Вестингауза, разработанных Теслой, решили на бандите Уильяме Кеммлере, который был приговорен к смертной казни за убийство своей любовницы (разумеется, не гуманным током, а негуманным топором). Был и второй претендент на первенство в кончине на электрическом стуле — некий Джозеф Шапло, который зачем-то потравил соседских коров (по другой версии, отравил хозяина этих коров), но он получил пожизненное. Видимо, все-таки коров.
Еще до решения о дате казни Кеммлера в дело снова вступил Эдисон. На глазах возмущенной общественности он поместил на металлическую сетку под током — конечно, переменным с напряжением 1000 вольт — десяток кошек и собак и включил ток. Животные умерли в мучениях, дамы истерически кричали. Эдисон потирал руки.
Происходило нечто очень странное. Фактически уже было доказано, что убивать преступников переменным током более человечно, чем постоянным. Для Эдисона расположение в прессе рядом друг с другом слов «смертная казнь» и «переменный ток» было очень выгодным, так как невольно бросало тень на переменные токи Вестингауза. Общественность, забыв о собственных предыдущих требованиях о гуманности, стала склоняться к идее использования в быту постоянного тока. Особенно после того, как Браун с Эдисоном начали распространять слухи об опасности переменного тока для законопослушных граждан — в полном противоречии с логикой. Ведь если переменный ток так опасен, не его ли следует использовать для убийства бандитов? Этот вопрос общественность задать себе не сумела.
Подогрел обстановку Томас Алва, который подтвердил, что убивать надо именно переменным током. Как было не поверить яростному стороннику тока постоянного! Схема казни должна была быть такой, согласно (1): «Эдисон предлагает прикрепить к запястьям осужденного провода, опустить его руки в сосуд с водой, в которой растворена каустическая сода и через которую будет пропущена тысяча вольт переменного тока, затем надеть на голову осужденного черный мешок и в нужное время подать ток. Электричество пройдет через руки, сердце и мозг, в результате чего наступит мгновенная и безболезненная смерть». Прекрасная реклама переменного тока и всей компании Вестингауза! В газетах печатались сообщения типа: «В тюрьме Синг-Синг устроен электрический стул для казни осужденных. Использованные для этого переменные токи Теслы более смертельны, чем постоянный ток. Установка выполнена эдисоновской „Дженерал электрик“. Компания Эдисона приобрела для этой цели вестингаузовский генератор переменного тока напряжением 2000 вольт».
Вестингауз начал обороняться. Он написал в газеты, что переменный ток не опаснее постоянного, от которого тоже можно погибнуть. Душегуб Кеммлер все это время сидел в тюрьме и ждал решения экспертов. Его адвокат добился вызова Эдисона для допроса по поводу его метода казни — путаница дошла до того, что практическое, повсеместное использование переменного тока стали считать эдисоновской идеей! На вопрос о возможной связи Эдисона с Брауном великий изобретатель остроумно ответил, что ему не известно, имеет ли Браун отношение к его компании (т. е. не ответил ни «да», ни «нет»). А на вопрос о том, обуглился бы Кеммлер после пропускания тока, разумеется переменного, Эдисон ответил, что бандит превратился бы в мумию. На этом они разошлись, оставив общественность в полном недоумении — что это было? Так переменным убивать или постоянным? И можно ли использовать переменный ток в быту?
Вконец запутавшиеся человеколюбы начали протестовать вообще против казни электричеством. Мол, никто не знает, что будет чувствовать преступник во время пропускания через него электротока и сколько времени это будет длиться. К тому времени Кеммлер просидел в камере смертников еще целый год, но наконец-то случай проверить эффективность электрического стула Эдисона (на чужом переменном токе) нашелся. Кеммлера усадили на стул, прикрепили электроды совсем не к тем местам, что указывал Эдисон (к ногам и голове), и включили рубильник. Кстати, этот рубильник также был одним из давних изобретений действительно Эдисона. Сначала все пошло неплохо — душегуб этак вздрогнул и тут же поник головой. Все решили, что умер. Но через несколько минут… «К ужасу всех присутствующих, грудь преступника начала вздыматься, на губах появилась пена, и он начал на глазах оживать». И умер только после повторной подачи тока. Присутствующие были потрясены и сравнивали казнь с действиями варваров и извергов, достойных подземелий инквизиторов. Вестингауз, прочитав протоколы казни, заявил: «Это был жестокий эксперимент. Гораздо гуманнее было бы отрубить ему голову топором».
Эдисон также остался недовольным, хотя появление теперь рядом слов «мучения» и «переменный ток» ему было наверняка на руку. Однако работа была проделана неаккуратно — Эдисон сообщил, что волосы на голове Кеммлера не являются хорошим проводником (что совершенно верно), и оптимальным способом проведения казни было бы все-таки предложенное им погружение рук в раствор электролита. Кстати, имея химическое образование, автор этой книги считает предложение Эдисона не совсем удачным. Зачем брать каустическую соду, т. е. раствор натриевой щелочи? От нее преступник будет только больше страдать — щелочь интенсивно разъедает кожные покровы, а если у Кеммлера были и ранки на руках (от наручников, например), то боль могла быть очень сильной. Гораздо проще и правильнее использовать не такую активную и жгучую, как щелочь, а обычную поваренную соль — раствор хлористого натрия является прекрасным проводником электрического тока.
И все-таки в войне электрических токов победил Вестингауз — то есть Тесла. Компании Вестингауза удалось совершить два эффектных начинания, окончательно «добивших» постоянный ток Эдисона. Первым из них было оснащение электропитанием и освещением Международной электротехнической выставки в 1893 году в Чикаго. Эту выставку еще называли Колумбовой в честь четырехсотлетия открытия Америки. Контракт на электрификацию выставки удалось получить компании Вестингауза. Для питания около 200 тысяч ламп накаливания и дуговых ламп на территории выставки была построена самая большая а мире (в то время) электростанция многофазного тока мощностью более 9 мегаватт, четырнадцать тесловских генераторов. Компания Вестингауза хотела на весь мир объявить, что существует только один изобретатель многофазной системы, поэтому перед входом на выставку она установила монумент высотой с пятиэтажный дом, на котором было написано: «Электрическая компания Вестингауза. Многофазная система Теслы». В электротехническом павильоне выставки находился специальный стенд, на котором Тесла лично демонстрировал свои изобретения, прежде всего аппаратуру высокой частоты (об этом позже) — самое эффектное зрелище на этом параде электричества. А символом электрического отдела Колумбовой выставки было «те-слово яйцо». Изобретатель остроумно обыграл известное выражение «колумбово яйцо», доказав возможность поставить яйцо на попа, даже не разбивая его. Колумб, как известно, доказал простоту решения задачи, несколько нарушив условия и просто разбив его с одного конца — яйцо с вмятиной, конечно, легко устанавливалось на столе и не опрокидывалось. А Тесла поставил на столик двухфазный кольцевой статор, закрыл его для конспирации деревянным диском, на который положил стальной ротор, выполненный в виде куриного яйца. При подаче напряжения на статор «яйцо» начинало вращаться и, постепенно разгоняясь, принимало вертикальное положение. Этот опыт наглядно демонстрировал использование вращающегося магнитного поля. Любопытно, что главный конкурент Вестингауза — великий Эдисон представил на выставке в том числе и свою собственную систему переменного тока. Впрочем, его экспонаты на постоянном токе были куда убедительнее — он продемонстрировал действующий трамвай, по озеру Мичиган курсировали его прогулочные лодки, работающие от аккумуляторов, был устроен даже движущийся тротуар. Не обошлось и без гигантомании — эдисоновская «Дженерал электрик» установила в центре павильона электричества 28-метровую «Башню света», на поверхности которой были зажжены двадцать тысяч электрических ламп обычного размера, а на вершине горела гигантская лампа накаливания Эдисона. Кроме того, на выставке состоялась мировая премьера, как выражаются сейчас по поводу очередного идиотского боевика, вовсе не идиотских изобретений великого электротехника — многоканального телеграфа, фонографа, кинетоскопа.
Для понимания невероятной «тесламании», которая началась после Колумбовой выставки, необходимо сказать, что в это же время на ней проходил Международный электротехнический конгресс, на котором Никола Тесла выступил перед почти тысячей инженеров-электриков в павильоне «Сельское хозяйство» — только там могло собраться такое большое количество слушателей. Присутствовали знаменитости — например, Галилео Феррарис (о нем немного позже) и сам Генрих фон Гельмгольц, посторонних не пускали, хотя спекулянты предлагали билеты по десять долларов. Давно понявший подлинные интересы публики, Тесла не стал мучить гостей зубодробительными формулами и схемами, тем более что половину присутствующих представляли жены электротехников, мало понимающие в роторах-статорах. Он предпочел демонстрацию своих опытов и преуспел в этом, показав и «теслово яйцо», и пропускание через себя молний, и многое другое. Больше всего присутствующих поразили металлические шарики и диски, размещенные вдали от источника вращающегося магнитного поля. При включении которого все они начинали вращаться, хотя явно не были связаны с источником никакими проводами. Не интересуясь женским полом, Тесла тем не менее догадывался о приоритетах дочерей Евы, и под восторженные охи и ахи показывал вращение металлических дисков с укрепленными на них драгоценными рубинами и изумрудами, причем диски и камушки могли находиться в любой точке павильона. Короче, после своей лекции Тесла стал знаменит, а особенной популярностью стал пользоваться у дам, и сейчас-то не умеющих ввернуть лампочку в патрон, а тогда и подавно.
Кроме тесловских пиар-представлений, на конгрессе работали несколько важных комиссий, которые приняли в качестве обязательных для всех стран международные электрические и магнитные единицы — «ампер» для силы тока, «ом» для сопротивления и некоторые другие. Через много лет появится и единица «тесла»…
Эта выставка стала важнейшим событием в истории применения электричества. Огромный успех Теслы и Вестингауза заставил и Эдисона, скрипя зубами, начать разрабатывать и производить электрооборудование переменного тока. Но уже трехфазного — Эдисон верно оценил изобретения Доливо-Добровольского, подтвержденные теоретическими работами крупного электротехника Штейнмеца, которого он взял, на работу в качестве главного специалиста.
Вторым начинанием, «добившим» постоянный ток, было сооружение Ниагарской гидроэлектростанции и расположенного рядом энергоемкого промышленного комплекса. Переменный ток победил — а кстати, почему?
Дело в том, что электрический ток, как мы уже говорили ранее, получают в одном месте, а потребляют совсем в другом. Ток надо передавать по проводам, желательно с наименьшими потерями, часто на очень большие расстояния. Согласно закону Джоуля — Ленца, потери на выделение тепла при передаче электротока пропорциональны квадрату силы тока. Выделение тепла — это потери. Поэтому выгодно передавать ток при очень малых значениях силы тока и большом напряжении. Повысить напряжение переменного тока очень легко — трансформаторами, а в случае постоянного тока это проблема, требующая для своего решения установки сразу нескольких сложных устройств. Сейчас переменный ток передают на ЛЭП при напряжении 500 и 750 тысяч вольт («ЛЭП-500» — непроста-а-ая линия", как пелось в песне Пахмутовой и Добронравова… Как раз "ЛЭП-500" не такая уж и сложная). При использовании на месте, или с целью запасти электрическую энергию, выгоднее использовать постоянный ток. Так делают, например, запасая ток в аккумуляторах автомобилей, а для фонариков покупают те же аккумуляторы или обычные батарейки.
Что касается опасности переменного и постоянного тока, то переменный ток отечественной частоты 50 герц и вправду опаснее, во всяком случае, при бытовом уровне напряжения 220 вольт. При больших значениях напряжения опаснее постоянный, но нам до этого дела нет, это пусть электрики остерегаются. Нам не надо только пальцы в розетку тыкать. В соответствующей главе мы еще расскажем, как Тесла пропускал через себя токи огромного напряжения, но и огромной частоты — а теперь известно, что при очень больших частотах ток течет только по коже (скин-эффект), не достигая жизненно важных органов. Так что эффектная демонстрация Теслы на Колумбовой выставке с пропусканием через себя аж 100 000 вольт содержала в себе элемент мистификации. И сам он, и сочувствующие журналисты не раз говорили и писали, что он пропустит через себя ток такого неимоверного напряжения без всякой опасности для жизни, тогда как в тюрьме Синг-Синг ток не превышал 2000 вольт. Но за исключением наиболее продвинутых электротехников на лекции Теслы никто не знал, что сравнивать высокочастотный ток с низкочастотным просто некорректно. Об этом следует помнить, когда читаешь книги про "волшебство" изобретателя и рассматриваешь эффектные фотографии со снопами молний, вылетающих из пальцев Теслы. И особенно — когда слышишь о невероятных, фантастических и чрезвычайно опасных для Земли и человечества изобретениях Теслы, явным подтверждением реальности которых являются эти молнии. Еще раз хочется сказать, что в молниях нет ничего удивительного, а опасные изобретения существовали только в воображении Теслы и в текстах интервью с ним. Т. е. в действительности ничего такого не было.
В пресловутой "битве электрических токов" победил Никола Тесла. Это известно сейчас каждому школьнику, который хоть что-то слышал о переменном токе и знает, что именно такой ток приводит в движение домашний холодильник и раскаляет спираль электрической лампочки. Но постоянно встречающиеся в прессе, кочующие из одного издания в другое, утверждения, что Тесла и Эдисон ненавидели друг друга, абсолютно противоречат действительному положению дел. Оба великих изобретателя встретились снова, после ухода Теслы от Эдисона, на Национальной выставке электротехники в мае 1895 года, через два месяца после пожара лаборатории Теслы на 5-й авеню, выставка была организована в Филадельфии, и впервые переменный ток был передан по методу Теслы на расстояние 800 километров с Ниагарской электростанции, правда, с небольшим напряжением и по телефонным проводам — страховая компания, к которой на этот раз Тесла обратился и заключил контракт, после пожара побаивалась экспериментов изобретателя и настояла на фактически демонстрационной передаче переменного тока. Однако все равно это был рекорд, который затмил предыдущий рекорд — передачу тока с водопада на реке Неккар во Франкфурте. Знаете, что сказал по этому поводу "враг" Эдисон? "Эта передача Теслой электроэнергии на большое расстояние является крупнейшим достижением электрической науки за последние несколько лет". Вот так-то. Кроме того, Эдисон — я уверен, что совершенно искренне, — выразил Тесле сочувствие по поводу потери лаборатории. А Тесла поблагодарил его за возможность в течение нескольких недель, пока он искал помещение для новой мастерской, пользоваться одной из лабораторий Эдисона в Нью-Йорке. Да-да, было и такое!
Глава 3Конкуренты и главное открытие
В статье "Тесла" третьего издания Большой советской энциклопедии написано: "В 1888 г. Т. (независимо от Г. Феррари и несколько ранее его) дал строго научное описание явления вращающегося магнитного поля". Что это еще за Г. Феррари, откуда взялась эта птица? И вообще, были ли у Теслы конкуренты, оспаривавшие его приоритет в открытии тех явлений, которые теперь принято связывать только с Теслой?
Как мы уже отмечали, еще в 1824 году Доминик Араго демонстрировал "магнетизм вращения" — немагнитный медный диск увлекался вращающимся магнитом и сам начинал вращаться. Между прочим, сам магнит вращался просто рукой экспериментатора. И вот именно в размышлениях о сути этого явления родилась великая идея Теслы о вращающемся магнитном поле, которую мы не называем гениальной только потому, что, оказывается, эта идея приходила в голову и другим ученым, прежде всего — Галилео Феррарису. Сама идея заключалась в том, что нужно каким-то образом заменить медный диск витками обмотки электродвигателя, а вращающийся магнит — вращающимся магнитным полем. Тесла придумал подавать на обмотки магнитных полюсов два переменных тока, отличающихся друг от друга лишь сдвигом по фазе. Чередование этих токов вызовет попеременное образование северного и южного магнитных полюсов, что, собственно, и означает вращение магнитного поля. Это поле должно заставить затем вращаться ротор двигателя. Оставалось лишь построить источник двухфазного тока (двухфазный генератор) и двухфазный электродвигатель, что Тесла вскоре и сделал, выбрав а качестве величины сдвига фаз 90 градусов. В то время он не догадался до сдвига в 120 градусов и не придумал трехфазных генераторов и электродвигателей.
Вот как сам Тесла описывает свое великое изобретение (2) в патенте № 381 968: "Предлагается двигатель, в котором имеются две или больше независимых цепей, по которым через правильные интервалы проходят, как описано ниже, переменные токи так, чтобы вызвать постепенное перемещение магнетизма или "силовых линий", заставляющее двигатель работать". Через две недели после получения основных патентов на систему многофазных токов Тесла выступил с лекцией на собрании Американского института инженеров-электриков, где и рассказал о вращающемся магнитном поле и революционной системе передачи переменного тока, преимуществах асинхронных двигателей и многофазных трансформаторов. После этой лекции он и стал Великим Теслой, а известный электротехник Беренд даже сравнил его лекцию со знаменитым трудом Майкла Фарадея "Экспериментальные исследования по электричеству".
Обнаруженное Араго явление было абсолютно непонятно ни его автору, ни его коллегам во Французской академии. Лишь через семь лет эксперимент был объяснен Майклом Фарадеем, открывшим электромагнитную индукцию. Именно проявлением ее, как частным случаем, и являлся "магнетизм вращения", как называл его сам Араго. Лишь через много лет, в 1879 году английский физик Уолтер Бейли видоизменил опыт таким образом, что сам оказался на полшага от открытия вращающегося магнитного поля. Он расставил четыре электромагнита вокруг медного диска, насаженного почти без трения на медную же ось, и последовательно, по часовой стрелке, подавал на них напряжение — постоянный ток от гальванических элементов. В сущности, он реализовал прерывистое перемещающееся магнитное поле, и диск исправно вращался. Однако Бейли опубликовал результаты эксперимента в малозаметном издании, видным ученым не демонстрировал, и про этот опыт забыли.
Биограф Николы Теслы, проведший много часов в архивах Грант Цверава, сумел отыскать в "Еженедельных докладах" от 1883 года Парижской академии наук статью тогдашнего лидера французских электротехников Марселя Депре под названием "Об электрическом синхронизме двух относительных движений и о его применении для построения новой электрической буссоли". Буссоль — это такой инструмент для определения угла между магнитным меридианом и направлением на какой-либо объект. Буссоль представляет собой вращающуюся магнитную стрелку и две стойки с прорезями друг напротив друга, укрепленные на диаметрально противоположных сторонах диска, на котором эта стрелка и вращается. На диск нанесены деления (величины углов). Глядишь через зрительно совмещенные стрелки на предмет (например, на экран телевизора с орущим молодым Малаховым или гнусящим с мерзким акцентом пожилым Малаховым) и видишь, на какой градус отклонилась стрелка. Потом спускаешь курок и стреляешь в этих негодяев… нет, это я загнул, никакого курка на буссоли нет, а в данном случае жаль…
Депре доказал возможность создания поворачивающегося магнитного поля путем наложения двух магнитных потоков одинаковой частоты, но сдвинутых по фазе на 90 градусов. Эта схема предназначалась автором для навигационных целей, реализована не была, но применяется сейчас в сельсинных устройствах — специальных электрических машинах. Например, в некоем агрегате вал поворачивается на определенный угол, а нам надо, чтобы вал другого агрегата, стоящий в дальнем углу цеха, повернулся на тот же угол. Можно связать валы железной палкой, но это неудобно, и валы остаются механически несвязанными. Сельсины связывают их "электрическим" путем.
Любопытно, что сам Марсель Депре в следующем, 1884 году заявил на всю Европу, что переменный ток не имеет будущего, хотя сам был так близок к открытию вращающегося магнитного поля. Самое же важное событие в деле уточнения приоритета Николы Теслы произошло весной 1888 года. К несчастью Теслы, на два месяца раньше публикации основных патентов нашего великого изобретателя. В марте того года профессор Промышленного музея Галилео Феррарис выступил перед общим собранием Туринской академии наук с докладом о бесколлекторном (т. е. без выпрямителя) электродвигателе переменного тока, построенном на принципе вращающегося магнитного поля. Феррарис нашел условия, при которых в однофазной цепи возникали два переменных тока, сдвинутых по фазе. Он построил несколько лабораторных моторчиков с искусственной второй фазой, которые развивали ничтожную мощность в три ватта при скорости вращения до 900 оборотов в минуту. В том же году в мае Тесла показывал в сотни раз более мощные двигатели. Любопытно, что эти устройства он придумал для моделирования и демонстрации изначально вовсе не электрических явлений, а эффекта поляризации света.
Феррарис сам не понял сути сделанного им изобретения, посчитав его не более чем игрушкой, не пригодной для какого-нибудь промышленного использования. Кроме того, он неправильно рассчитал предельный КПД своих двигателей, оценив его всего-то в 50 %. Видимо, именно вследствие скептического взгляда на свои моторчики он не взял на них патент и вообще начал подчеркивать свою роль в создании тесловских двигателей лишь через несколько лет. Хотя доклад был сразу же напечатан в миланском "Электрическом журнале", 150 копий доклада разослано теоретикам и практикам электротехники, а в ноябре 1888-го доклад был перепечатан американским "Миром электричества". Касаясь приоритета Теслы, скажем сразу, что если патенты серба были опубликованы действительно на пару месяцев после лекции Феррариса, то заявки-то на патент были поданы еще в октябре 1887 года, Как и сейчас, датой изобретения или открытия является дата получения и регистрации заявки в патентном бюро или получения статьи в научном журнале. Однажды Феррарис заявил, что работы по изучению вращающегося магнитного поля были начаты им еще в 1885 году, но никаких печатных свидетельств об этом нет. Кроме того, Тесла демонстрировал действующую модель своего двигателя еще во время работы в Страсбурге в 1884 году. Да и сам двигатель Феррариса с "расщепленной" фазой был лишь частным случаем многофазных двигателей Теслы.
На авторство открытия вращающегося магнитного поля или по крайней мере на приоритет в изобретении индукционного двигателя претендовали и другие ученые. Так, американец Чарльз Брэдли в 1889 году запатентовал двухфазный асинхронный двигатель (частота вращения которого уменьшается с ростом нагрузки), потом и "Систему распределения электроэнергии" с трехфазной схемой и синхронным генератором. Однако ни в одном из своих патентов, не получивших практического воплощения, Брэдли не упоминает о вращающемся магнитном поле. На авторство многофазной системы и распределение электроэнергии, в основном для применения на транспорте, претендовал и немец Фридрих Хазельвандер, но и он не догадался о необходимости вращения магнитного поля и асинхронного двигателя не изобрел. Правда, он в 1890 году провел трехфазный ток на расстояние около одного километра между своей фабрикой мебели и лесопилкой. Это была первая в мире линия передачи трехфазного тока, но не полноценная и не заслуживающая патента. Гораздо опаснее для приоритета Теслы оказались работы М. О. Доливо-Добровольского, о котором позже.
Михаил Осипович прочел текст туринской лекции Феррариса в английском переводе и, как Он неоднократно подчеркивал, немедленно увлекся проблемой многофазных токов. Еще во время чтения статьи он представил себе принцип действия электродвигателя, основанного на использовании вращающегося магнитного поля. Немедленно, просто в уме он перепроверил расчеты Феррариса и убедился в их ошибочности. И самое главное — он тогда же понял преимущества трехфазного тока перед двухфазным. У Теслы появился опасный соперник.
К 1890 году Доливо-Добровольский уже создал трехфазные электродвигатели и генераторы, разработал чертежи трехфазных трансформаторов. Разработал он и систему связанной трехфазной передачи тока всего по трем проводам вместо шести в несвязанной системе Теслы — это привело к резкому снижению расхода недешевой меди. Вскоре русскоязычному изобретателю удалось продемонстрировать свои изобретения на Всемирной электротехнической выставке, совмещенной со Всемирным конгрессом электриков во Франкфурте-на-Майне в 1891 году.
За год до этого организаторы выставки обратились к фирме AEG с предложением организовать передачу энергии от водопада на реке Неккар до павильонов выставки. Главный инженер этой фирмы Доливо-Добровольский немедленно начал проектировать трехфазный асинхронный двигатель, трехфазные трансформаторы и аппаратуру для линии электропередачи и распределения электроэнергии на выставке. Огромный успех всей системы на выставке, особенно достижение КПД 75 % при напряжении 15 тысяч вольт и 79 % при напряжении 28 тысяч вольт, привел к повсеместному распространению трехфазного тока. И хотя Доливо-Добровольский не раз говорил, что приоритет относительно многофазных машин принадлежит Тесле, его фирма попыталась оспорить патенты последнего, не желая перекупать патенты у Вестингауза.
Ничего не вышло. Приглашенные патентным ведомством эксперты, безусловные авторитеты в электротехнике, Антони и Беренд доказали, что уже в первых патентах Теслы содержится указание на систему многофазных токов, а трехфазный — лишь один из них. В пользу Теслы высказался и знаменитый электротехник, главный консультант "Дженерал электрик" Чарльз Штейнмец. В ответ на предложение признать приоритет Феррариса этот эмигрант из Германии — как и Доливо-Добровольский, он эмигрировал из-за своих социалистических взглядов, — заявил, что Феррарис построил всего лишь маленькую игрушку, а потом публично заявил, что в системе русского изобретателя нет ничего нового по сравнению с результатами Теслы. Известно, что очень многие электротехники были удивлены оценкой Штейнмеца, но со временем, разобравшись в его блестящих, но сложных расчетах, они полностью признали правоту этого маленького человека — Штейнмец имел рост около 125 сантиметров, был почти карликом.
Кстати, про Феррариса фирма AEG вспомнила после неудачи с признанием приоритета Доливо-Добровольского на трехфазное электричество. По-прежнему не желая платить Вестингауэу за тесловские патенты, крючкотворы из юридического отдела фирмы попытались оспорить приоритет Теслы вообще в открытии многофазных переменных токов. Сразу были названы имена предшественников — все того же Феррариса, а также Хазельвандера, Брэдли и уж совсем некстати приплетенных сюда Йонаса Венстрёма и Оливера Шалленбергера. Но опять ничего не вышло. Фирма вела процессы против Вестингауэа в течение 20 лет (!), всего состоялось несколько сотен заседаний по 25 искам, но все они были Вестингаузом выиграны. Хотя величайшей заслугой Доливо-Добровольского следует признать оптимальность связанной трехфазной системы и создание трехфазного асинхронного двигателя.
Для специалистов по психологии людей с физическими недостатками будет интересно следующее обстоятельство. Спустя некоторое время после признания Штейнмецем приоритета Теслы к нему обратилась его родная компания "Дженерал электрик" с предложением усовершенствовать изобретения Теслы таким образом, чтобы затмить великого изобретателя. Штейнмец принял вызов и начал работать над системами передачи и получения переменного тока, что было очень странно, поскольку он лучше других разобрался в вопросе и отлично знал, что в любом случае все основные изобретения сделаны Теслой и вовремя запатентованы. Может быть, он надеялся найти какое-то другое электричество? Как в каком-то анекдоте просят найти другой глобус Земли.
Разумеется, ничего не получилось и в этом предприятии. Даже акт промышленного шпионажа и похищения чертежей Теслы с завода Вестингауза подкупленным дворником не помог "Дженерал электрик", однако Штейнмец все-таки поступился принципами. В своем труде "Теория и расчеты явления переменного тока", вышедшем в 1В97 году, через три года после публикации сочинений Теслы, карлик вообще не упомянул о великом ученом. Более того, он даже не упоминал в списке литературы монографию "Изобретения, исследования и статьи Николы Теслы", которая в те времена стала настольной книгой электротехников всего мира. Через пять лет, в 1902 году, Штейнмец написал книгу "Теоретические основы электротехники", ставшую учебником во множестве университетов и политехнических институтов. Увы, и здесь он ловко уклонился от признания приоритета Теслы, что в данном случае нанесло труднопоправимый вред истории электротехники. Несколько поколений студентов только через значительный промежуток времени после окончания своих высших учебных заведений с изумлением узнали о существовании Николы Теслы и его огромной роли в развитии их науки. Правда, потом, в качестве некоей компенсации, именно этими бывшими студентами авторитет Теслы был поднят на невиданную высоту, а его совершенно фантастические (если не сказать бредовые) идеи последних лет жизни были объявлены гениальными. Именно это обстоятельство во многом предопределило появление мнения о Тесле как об авторе несуществующего геофизического оружия, лучей смерти и прочей чепухи.
Помимо трехфазного двигателя Доливо-Добровольского и моторчиков других якобы предшественников Теслы, у него был и другой, совершенно неожиданный и нелепый конкурент. Некий бывший цирковой гимнаст и фокусник Джон Кили объявил о создании "гидропневматического пульсационного вакуумного двигателя". Приобретенное в цирке мастерство эффектного представления своего "изобретения" позволило Кили стать самым известным из тогдашних мошенников — не в качестве мошенника, а в качестве создателя вечного двигателя. Пресловутая мадам Блаватская объявила, что Кили открыл вриль Бульвер-Литтона (о вриле мы еще расскажем), который сам Кили называет отрицательным притяжением. В 1874 году Кили основал компанию с капиталом 100 тысяч долларов (большие тогда это были деньги!) и вплоть до 1889 года дурачил публику демонстрациями своего мотора. Как и современные жулики от "энергоинформационных свойств воды", Джон Кили использовал около и лженаучную терминологию, завораживающую, как и сегодня, безграмотных обывателей — "биполярные волны эфира", "тройственные потоки силового потока у полюсов", "отражающее воздействие гравитации" и тому подобную чушь. Вот как описывается в "Технологическом журнале" представление Кили: "Мистер Кили начал будить силу, ударяя по большому камертону смычком, а затем дотрагиваясь им до генератора. После двух или трех попыток, которые окончились неудачей, поскольку не удалось затронуть струну массы, он повернул маленький клапан в верхней части генератора. Когда раздалось легкое шипение, его приветствовали громкими криками. Выражение "Кили — ты подобен всемогущему Богу!" было в порядке вещей" (1).
В 1888 году шарлатана все же посадили в тюрьму, но через пару дней освободили под залог. Со временем его даже оправдали, поскольку он продемонстрировал суду принципы действия своего мотоpa с добавленной медной трубкой в форме обруча. Не надо удивляться тупости судей, ведь даже наш заговаривающий воду Чумак продержался на публике лет десять, а не так давно снова был продемонстрирован по телевизору как известный целитель. Кили же не был разоблачен до самой смерти, лишь после которой в подвале его дома были найдены большая железная емкость и трубы, идущие от нее через потолок в "лабораторию". Знаменитая "эфирная сила" Кили оказалась энергией сжатого воздуха, которая высвобождалась после незаметного нажатия скрытой педали.
К сожалению, преждевременные и не всегда выполнимые обещания Николы Теслы поставили его в один ряд с проходимцами вроде Кили. Еще хуже стало дело, когда было опубликовано письмо некоей дуры, мечтавшей, чтобы Тесла прочитал книгу Бульвер-Литтона и сделал бы после этого немало великих открытий. Многие решили, что электричество Теслы — это все та же "сила вриля". И хотя Тесла не перечитывал Бульвер-Литтона уже много лет, "осадок остался" — по старому анекдоту.
То было время по-настоящему великих открытий и изобретений, и неудивительно, что десятки мошенников пытались впарить доверчивым бизнесменам свои таблетки, превращающие воду в бензин, как некий Булмер, источник энергии из гидрораспределителя воды, как еще более некий Хонино, или агрегат, превращающий обычную бумагу в двадцатидолларовые банкноты Люстига. К сожалению, но и по его собственной вине, многие стали причислять к этим шарлатанам и Теслу.
Но вращающееся магнитное поле открыл и придумал все-таки он, и это открытие — возможно, главное в истории электротехники второй половины XIX века.
Глава 4Ниагара
Еще юношей, еще в Хорватии, Никола Тесла рассматривал фотографии Ниагарского водопада и мечтал о том дне, когда он увидит это чудо природы. Более того, он уже тогда мечтал о покорении водопада и устройстве на нем огромного водяного колеса, которое крутило бы жернова и прочие устройства. Однако мечты мечтами, но примерно в те же годы несколько американских инженеров уже составляли планы по практической эксплуатации гигантской энергии водопада, вначале тоже для вращения жерновов и промышленных агрегатов, а со временем и для устройства электростанции, 8 1886 году соответствующий проект был представлен Томасом Эвершедом, однако в нем предполагались огромные затраты на расчистку территории, пробивку тоннелей и каналов. Кроме того, было еще не очень понятно, куда должна поступать выработанная электроэнергия, — передача постоянного тока в те времена могла осуществляться только на несколько километров. Следовательно, надо было строить рядом с водопадом какой-либо энергопотребляющий завод либо научиться передавать энергию хотя бы в соседний, тогда небольшой, город Буффало. И в 1889 году решение этой второй задачи было предложено Эдисоном, хотя ранее уже был успешный опыт передачи электроэнергии на значительно большее расстояние — 200 километров, которое осуществили Чарльз Браун и наш соотечественник Михаил Доливо-Добровольский, работавший на германскую Объединенную электрическую компанию. Используя сразу несколько изобретений Теслы, они сумели осветить Всемирную электротехническую выставку во Франкфурте-на-Майне, передав трехфазным переменным током энергию с водопада на реке Неккар, притоке Рейна. Однако Тесла за год до этого получил патенты на использование любой многофазной системы передачи такого тока, и трехфазная система являлась лишь частным случаем его изобретений. Компания, в которой работали Браун и Доливо-Добровольский, пыталась оспорить тесловские патенты, но безрезультатно. Об этом мы уже говорили.
Эти патенты в то время были выкуплены дальновидным предпринимателем Джорджем Вестингаузом, который сколотил первоначальное состояние не на бирже или спекуляциях, а на своих собственных изобретениях, что было тогда редкостью. Собственно, и сейчас Билл Гейтс является исключением. Началось все с изобретения знаменитого воздушного тормоза, которое позволило двадцатитрехлетнему сыну владельца завода сельскохозяйственных машин основать собственную фирму (м-да… все-таки сын владельца завода… не совсем Золушка…).
В (2) указывается, что объективную оценку достижений компании Вестингауза можно найти в отчете А. И. Смирнова, которого русское правительство в 1893 году командировало в США для ознакомления с состоянием дел в электротехнической области. Инженер сообщает, что "громадный промышленный успех и быстрое развитие деятельности этой американской фирмы делает ее весьма интересной не только для американских электротехников, но и для нас. Можно с уверенностью сказать, что предприимчивости и энергичной деятельности этой фирмы Америка много обязана своей столь широко развившеюся электротехникой. Развивалась эта фирма с чисто американской быстротой и в какие-нибудь семь лет достигла того, что ее приборы и машины применяются на бесчисленном множестве установок во всех странах света, не говоря уже о том, что нет ни одной отрасли электротехники, которой не коснулась бы предприимчивость этой компании. Объясняется это, конечно, талантливостью ее техников (к числу которых принадлежит известный Тесла), а также очень важным принципом, положенным в основании ее деятельности и строго соблюдаемым во всех случаях. При выделке всех приборов обращают особое внимание на простоту и прочность устройства и на возможно высокое полезное действие".
В начале 80-х годов позапрошлого века будапештская фирма Ганца успешно внедряла однофазный ток для промышленного использования. Схема разводки электропроводов, разработанная инженерами Ганца, демонстрировалась на выставке изобретений в Лондоне, и побывавший на этой выставке сотрудник Вестингауза электротехник Панталеони дал ей высокую оценку и фактически предопределил выбор переменного тока фирмой Вестингауза для ее деятельности. К тому времени главный инженер фирмы Стенли уже сконструировал однофазный трансформатор и построил линию электропередачи однофазного тока высокого напряжения длиной более шести километров в штате Массачусетс. Однако Вестингауз предпочел приобрести лицензии на трансформаторы Голяра — Гиббса, которые, впрочем, впоследствии без обид усовершенствовал все тот же Стенли. К 1888 году фирма построила более ста небольших электростанций однофазного тока, которые работали на частоте 133 герца.
Вернемся немного назад и скажем несколько слов о Михаиле Осиповиче Доливо-Добровольском. Он родился в 1861 году в Гатчине, в семье чиновника, в детском возрасте вместе с семьей переехал в Одессу, где его отец начал издавать газету. Под очень интересным названием — "Правда"! В 1880 году юноша окончил Одесское реальное училище и поступил на химический факультет Рижского политехнического института, но из-за участия в студенческих антиправительственных выступлениях был вынужден покинуть институт и уехать за границу для продолжения образования (вынужден уехать! вот он был какой, кровавый царский режим!). В Германии закончил Дармштадтское техническое училище, но в Россию не вернулся (ищи дураков) и начал работать на немецком отделении эдисоновской компании, которое в 1909 году даже и возглавил. Практически одновременно с Теслой он придумал генератор переменного тока, а потом и систему передачи переменного трехфазного тока. Разумеется, по российской интеллигентской привычке он не устроил рекламного шоу из своих достижений и известен публике значительно меньше, чем Тесла, если не сказать, что вообще неизвестен.
Особенно интересно, что этот адепт переменного тока со временем сообразил и опубликовал по этому поводу обстоятельные теоретические расчеты, что на большие расстояния нужно передавать все-таки постоянный ток с чудовищным напряжением в миллионы вольт, и уж на месте понижать напряжение и переводить постоянный ток в переменный. Потери при такой передаче неизмеримо ниже, чем при использовании переменного тока. Сейчас так и делают, мощные ЛЭП (линии электропередачи) при передаче тока на расстояние от 1,75 тысячи километров устраивают на постоянном токе. Существует даже проект прокладки Трассы энергопередачи постоянного тока свободного рынка электроэнергии России, от Минска до Владивостока, в Сибири приблизительно параллельно Транссибу. К такой трассе мог бы подсоединиться любой производитель электроэнергии и продавать ее потребителям. В случае переменного тока это требует малоосуществимой одновременности работы всех участников рынка, в случае постоянного тока — подключайся когда угодно.
Довольно странно, но достижение Брауна и Доливо-Добровольского довольно долго не смогли повторить, несмотря на то что и генератор Теслы уже был создан, и все физические принципы передачи переменного тока были известны. Например, в том же 1889 году Себастьян Ферранти передал довольно большое напряжение, 11 тысяч вольт, на расстояние всего 10 километров, а компания Вестингауза осуществила в 1893 году передачу аж 60 тысяч вольт на расстояние 6 километров для освещения Чикагской всемирной выставки. Но от Ниагарского водопада даже до Буффало было 30 километров, а от главного из потенциальных потребителей тока Нью-Йорка все 500. Инвесторы и владельцы Ниагарского проекта решили разобраться в проблеме и откомандировали будущего строителя электростанции Эдварда Адамса а Германию для переговоров с Доливо-Добровольским и Брауном. Этот Адамс объездил всю Европу, встречался с массой инженеров и дельцов и понял, что работать необходимо только с переменным током. Будучи в первую очередь все же бизнесменом, он зарегистрировал в Лондоне Международную Ниагарскую комиссию, председательствовать в которой уговорил самого лорда Кельвина (это который про абсолютную шкалу температур и градусы Кельвина). Понятно, что это назначение сродни приглашению свадебного генерала или председательствованию бывшего германского канцлера Герхарда Шредера в консорциуме по строительству Балтийского газопровода.
Ниагарский водопад имеет высоту 48 метров и находится на реке Ниагара, соединяющей два из Великих озер — Эри и Онтарио. Посередине водопада находится остров, который делит водопад на американскую и канадскую части (граница обеих стран проходит по этому острову), причем по канадской части протекает в девять раз больше воды, чем по американской.
Финансист Адаме объявил конкурс на лучший проект электростанции на Ниагаре и получил две дюжины предложений. Сейчас это покажется комичным, но большинство из них тогда были основаны на использовании гидравлики и сжатого воздуха. Т. е. энергией падающей воды предполагалось сжать воздух, передать его по трубе в Буффало, где этот сжатый воздух будет что-то там крутить и долбить, как это делают сейчас с нашим асфальтом гастарбайтеры пневматическими молотками. Только в одном проекте английского профессора Джорджа Форбса предлагалось использовать генераторы и двигатели переменного тока, естественно, выпускаемые компанией "Вестингауз электрик" в соответствии с изобретением и по патенту Николы Теслы. Несмотря на экономический кризис 1893 года и промышленный шпионаж, в результате которого у Вестингауза пропали некоторые чертежи аппаратов на переменном токе, в том же году профессор Форбс с коллегами заключил договор с компанией Вестингауза и работа по Ниагарскому проекту началась. Разумеется, в его основе лежали изобретения Теслы и его двухфазная система. Несмотря на конечный успех предприятия, в данном случае Форбс совершил ошибку. Трехфазная система, примененная на реке Неккар Брауном и Доливо-Добровольским, значительно выгоднее и сейчас применяется почти во всех случаях. Двухфазный генератор Теслы действительно компактнее, а двухфазный переменный ток легче преобразовать в постоянный, применяемый прежде всего для электролиза, однако эти преимущества тают при рассмотрении эффективности выработки трехфазного тока. Впрочем, свою ошибку Форбс совершил вслед за самим Теслой, который тогда не оценил преимущества трехфазности просто из-за неразвитости теории электрического тока.
О роли Теслы в создании проекта гидроэлектростанции и его авторстве генераторов этой станции немедленно прознали газетчики, и можно считать, что именно тогда началось восхождение Теслы на вершину бумажной славы. О нем написали все главные общественные и научно-популярные издания, у него брали интервью лучшие репортеры. Теслу уже не стеснялись называть гением. Однако изобретатель не загордился и не бросил работать, а, наоборот, непрерывно улучшал свои механические и электрические осцилляторы (высокочастотные генераторы) и системы передачи переменного тока. Адамс посетил его в нью-йоркской лаборатории и предложил создать новую компанию, в которую Тесла передаст свои патенты, а Адаме — 100 тысяч долларов. Тесла согласился.
В октябре 1888 года, по настоянию Вестингауза, Тесла переехал из Нью-Йорка в Питтсбург на завод этого магната. Здесь он мог сосредоточиться на производстве электродвигателей переменного тока, освобождая собственную лабораторию в "Большом яблоке" от рутинной сборки агрегатов. Вестингауз положил Тесле более чем приличное месячное вознаграждение в 2000 долларов, но решил использовать талант изобретателя для усовершенствования и серийного выпуска маломощных электродвигателей, которые можно было включать в однофазные осветительные сети, — дело было в том, что хозяин компании уже вложил в эти двигатели изрядный капитал и собирался вернуть деньги с продаж. Но вскоре возникли препятствия технического характера. На питтсбургском заводе было принято использовать частоту 133 герца, обеспечивающую некоторую экономию металла, но Тесла стал настаивать на использовании 60-герцового тока, превосходящего другие по всем параметрам (в России, кстати, используется частота 50 герц, хотя Тесла считал пониженные частоты неэффективными). Ему удалось убедить инженеров фирмы и самого Вестингауза в преимуществах такого тока, и положительное решение было принято. С тех пор и до настоящего времени в США принята частота 60 герц.
После завершения споров о частоте Тесла приступил к изготовлению двухфазных электрических машин. В феврале 1889 года первые в мире индукционные двигатели переменного двухфазного тока, разработанные Николой Теслой, были установлены на газовой станции около Питтсбурга — наконец-то Вестингауз начал зарабатывать на Тесле неплохие деньги. Со временем он понял, что его собственный завод нуждается в аналогичных асинхронных двигателях и в новом цеху установил их сразу 39 штук. Затем Вестингауз начал поставлять двигатели на другие предприятия Питтсбурга в Буффало, Детройт, Денвер и даже в столицу мормонов Солт-Лейк-Сити на горнорудные и железнодорожные предприятия. Успехи Вестингауза были замечены, и о них стали публиковать статьи ведущие электротехнические журналы. К чести магната, он никогда не забывал напоминать о роли Николы Теслы в разработках своей компании.
Осенью 1893 года начались работы по сооружению первой очереди Ниагарской гидроэлектростанции. Стройка велась в сложнейших геологических условиях — река Ниагара протекает по скальным породам. Здесь на глубине 50 метров с использованием взрывчатки сначала был пробит туннель диаметром 5–6 метров для монтажа вертикальных турбин, причем эти турбины были привезены из Европы. В Америке тогда еще не было развито производство таких машин. Первый агрегат был пущен уже в 1895 году, проектная мощность достигнута в 1896 году, а вторая очередь завершена еще через семь лет. Ниагарская гидроэлектростанция стала самым крупным гидротехническим сооружением того времени. Потребителями ее энергии стали построенные рядом с городком Ниагара-Фолс алюминиевый, химический заводы и фабрика по производству карборунда. Как раз к тому времени, в 1886 году был изобретен способ получения алюминия путем электролиза бокситов (оксида алюминия), применяющийся до настоящего времени. Электролиз требует огромных затрат электроэнергии, и до сих пор алюминиевые заводы строят возле гидроэлектростанций, а не около месторождений бокситов. На наши заводы в Сибири оказалось даже выгодным возить бокситы из африканской Гвинеи.
Понимание преимуществ трехфазного тока пришло довольно быстро. Уже в 1896 году была проложена воздушная трехфазная линия длиной 40 км в Буффало, для чего на станции были установлены повышающие трансформаторы для перевода тока в трехфазный. Посещая гидроэлектростанцию, Тесла нисколько не расстроился, увидев это нововведение, названное впоследствии "схемой Скотта" по имени главного электрика компании Вестингауза. Снабдив эту компанию своими изобретениями, убедившись в их работоспособности и деже заработав немало денег (Вестингауз заплатил ему за 40 патентов миллион долларов — огромную по тем временам сумму), Тесла увлекся решением совершенно иных задач. Вообще конкретное, скучное воплощение в жизнь своих изобретений не было сильной стороной ученого. Не проработав на питгсбургском заводе компании Вестингауза и года, он в 1889 году возвращается в Нью-Йорк, хотя и соглашается с настойчивыми уговорами Вестингауза поработать еще год на фирме в качестве консультанта. Сам Тесла был не очень доволен своим пребыванием в Питтсбурге. В своих заметках изобретатель пишет (3): "За год, проведенный в Питтсбурге, я не сделал никакого вклада в электротехнику. Я не чувствовал себя свободным в этом городе, зависимость и обязательства мешали мне работать. Для того, чтобы созидать, я должен быть абсолютно свободен. Когда я освободился от ситуации, создавшейся в Питтсбурге. идеи и изобретения снова хлынули в мою голову, как Ниагара".
А пока на гидроэлектростанции продолжались переделки. Не слишком долго провозившись с трансформаторами для повышения напряжения, их скоро сняли и просто перевели всю станцию на трехфазные генераторы, впрочем, также предусмотренные некоторыми патентами Теслы. Полученные от Вестингауза деньги сделали его весьма не бедным человеком, и он мог вернуться к изучению высокочастотных токов без необходимости заниматься продажей своих изобретений и поисков заработка. Кстати, о деньгах Вестингауэа. Тесла — великий человек, а великие люди часто ухитряются совмещать в себе противоположные качества. Например, Теслу никак нельзя назвать бессребреником, он полжизни положил на поиск инвестиций и уговоры бизнесменов. Одна переписка с Морганом чего стоит, чуть ли не в каждом письме он обещает финансисту золотые горы (с указанием конкретного объема горы в денежных единицах) в обмен на не слишком значительные затраты с его стороны — как же, незначительные! Речь всегда шла о минимум десятках тысяч долларов, а чаще всего о сотнях тысяч. Умножьте это этак на 10–20, и вы поймете, какие объемы инвестиций просил выделить ему Тесла в современных ценах.
Однако мы имеем и прямо противоположные примеры. Уже вскоре после того, как инженеры питтсбургского завода Вестингауза убедились в правоте Теслы и согласились с предлагаемым им переводом электрических машин на переменный ток с частотой 60 герц, разразился экономический кризис 1893 года. Даже крупные фирмы были вынуждены объединяться — Эдисон с Томсоном (появилась знаменитая и сейчас "Дженерал электрик"), Вестингауз с полудюжиной мелких фирм (возникла "Вестингауз электрик"). При этом на Вестингаузе "висели" обязательства по выплате Тесле роялти — процентов от проданного электрооборудования. Считается, что великий изобретатель должен был бы получить не менее 10 миллионов долларов, т. е. просто огромные деньги по тем временам. Да, но денег-то у Вестингауза уже не было! Миллионера Вестингауза тоже финансировали какие-то акулы с Уолл-стрит, и они потребовали расторжения контракта с Николой Теслой. В наше время и в нашей стране все решилось бы гораздо проще, хватило бы одной водопроводной трубы в подъезде, но у них там все не как у людей. И великий Вестингауз пошел на поклон к Тесле.
Хозяин компании объяснил изобретателю, что если Тесла потребует уплаты всей причитающейся ему суммы, то компания перейдет в руки банкиров, которым "до лампочки" открытия великого серба, и они найдут, куда вложить деньги и усилия компании помимо этих открытий. Хоть в те же лампочки Эдисона. Но если Тесла разорвет соглашение, то компания будет спасена и продолжит распространять по миру многофазные системы Теслы. Согласно легенде, великий изобретатель именно так и поступил, а именно буквально разорвал бумагу с текстом соглашения и выбросил обрывки в мусорное ведро. Потрясенный Вестингауз "не находил слов", однако вскоре нашел и что-то такое очень торжественное произнес. А Тесла отказался от 10 миллионов долларов — в конце жизни он, между прочим, жил на небольшое пособие от югославов. Не то что миллионов, даже тысяч долларов у него не было.
Глава 5Высокая частота
После ухода от Вестингауза у Теслы образовалось вполне достаточное количество денег, чтобы поселиться в лучшей гостинице Нью-Йорка, роскошной "Уолдорф-Астории" — сейчас обычай жить в гостиницах переняли российские богачи, а тогда так жили многие не бедные американцы. Тесла арендовал помещение на Гранд-стрит и организовал там лабораторию, посвятив свои исследования высокочастотным токам. Убедившийся и убедивший, в сущности, весь мир в преимуществах, переменного тока, пока еще низкой частоты, изобретатель решил повысить эту частоту до очень больших величин, надеясь в перспективе даже устроить передачу энергии на большие расстояния без использования проводов, одним излучением. Вначале он сконструировал генератор переменного тока со статором из 348 магнитных полюсов, что позволило генерировать ток с частотой 5 тысяч герц, а затем и генератор на 10 тысяч герц. Желание увеличить и эту частоту привело его к пониманию необходимости создания генераторов на иных принципах.
Одним из таких принципов было использование явления резонанса, т. е. резкого возрастания амплитуды колебаний какой-либо механической или электрической системы при наложении на них внешних колебаний с той же частотой. Действие построенного им генератора электромагнитных колебаний, который иногда называли резонанс-трансформатором, основано на резонансе первичного и вторичного контуров. Если в первых образцах своего устройства Тесле удавалось получить ток с частотой до 50 тысяч герц, то в усовершенствованных машинах Штейнмеца и Александерсона, основанных на предложенных Теслой принципах, были получены токи с частотой до 200 тысяч герц. Попутно Тесла решил еще одну задачу, да так, что это решение используют и сейчас, более ста лет спустя после патента Теслы. Для изоляции катушек сверхвысокой частоты он предложил просто помещать катушку в жидкий диэлектрик — масло, которое сейчас называют трансформаторным.
Важным элементом изобретения Теслы было использование в качестве источника электрических колебаний высокой частоты конденсаторов, а том числе простейшего из них — лейденской банки. Колебательный характер разряда банки (через катушку) был обнаружен еще за пятьдесят лет до работ Теслы, а уже совсем незадолго до начала работ изобретателя над высокочастотным генератором Генрих Герц завершил построение классической электродинамики, опираясь не выводы и уравнения теории Максвелла и представление о всемирном эфире. Открытие электромагнитных волн и доказательство того неожиданного факта, что свет также является электромагнитной волной определенной частоты, привело Теслу к решению заняться проблемой беспроводной передачи электричества.
Параллельно с этим он искал способы защиты от токов высокой частоты и первым догадался, что, возможно, особой защиты и не потребуется. Тесла знал, что постоянный ток с напряжением 120 вольт уже опасен для человека, при больших значениях появляется даже угроза для жизни. Но это относится именно к постоянному току. Если свет, т. е. электромагнитные колебания очень высокой частоты (тысяча триллионов герц), совершенно спокойно переносится человеком, то возможно, что и электрические колебания такой частоты — переменный ток — будут неопасны. Как и подобает настоящему изобретателю, Тесла ставил эксперименты на себе. Для этого он сначала пропускал ток только через пальцы одной руки и обнаружил, что действие электрического тока на организм человека складывается из нагрева и возбуждения нервных клеток. Далее он стал увеличивать напряжение и частоту тока, пропуская его уже через обе руки, — вообще это были очень опасные эксперименты, поскольку Тесла заранее результата все-таки не знал, а при пропускании электротока через обе руки ток проходит, в частности, через сердце. Но все обошлось, и ученый убедился, что при частотах тока более 700 герц никаких болезненных ощущений он не испытывает. То же самое происходит со светом; при частоте электромагнитных волн более тысячи триллионов герц глаз более не видит этих колебаний. В некоторых экспериментах Тесла достигал напряжения в миллион вольт и 100 тысяч герц.
В то же время тепловой эффект тока высокой частоты оставался, и именно тогда Тесла придумал использовать этот эффект для терапии. Электротерапевтические устройства, использующие токи высокой частоты, применяют и сейчас. Кстати, эти токи даже называют "токами Теслы". Высокочастотные колебания можно было использовать и совершенно неожиданным образом: однажды изобретатель увидел, как с окрашенного медного диска, случайно оказавшегося вблизи генератора высокой частоты, мгновенно испарилась краска. То же происходило и с рукой самого Теслы, когда он измазал ее типографской краской, — электромагнитное поле, образующееся вокруг проводника с током высокой частоты, по-видимому, вызывало микроскопические частые колебания предмета и счищало частицы краски. Тесла использовал и это явление для очистки кожи лица от мелкой сыпи, очистки пор и дезинфекции — удаления микробов, покрывающих тело человека. Надо отметить, что независимо от Теслы (и позже его) с токами высокой частоты работал француз Д'Арсонваль и в 1891 году предложил метод высокочастотной электротерапии — дарсонвализацию. "Токи Д'Арсонваля" применяются и сейчас.
Первым патентом Теслы в области генерирования высокочастотного переменного тока был патент под названием "Способ эксплуатации дуговых ламп", в котором он описал генератор, способный вырабатывать ток с частотой 5 тысяч герц. Питание дуговых ламп этим током приводило к кардинальному уменьшению шума при их работе. Можно смело предположить, что использование высокочастотного тока для решения такой, прямо скажем, не самой большой, проблемы дуговых ламп вряд ли было основной задачей изобретателя. Он получил патент в 1890 году, и известно, что уже тогда он задумывался над своей главной идеей в отношении таких токов — а именно, все о той же беспроводной передаче энергии.
Первым и самым заметным, причем в буквальном значении слова, успехом Теслы был опыт, который он, как обычно, поставил на самом себе. В противоположных углах лабораторной комнаты он разместил два металлических диска, к которым подключил свой генератор. Встав посередине комнаты и держа в руках две газоразрядные трубки, он приказал помощнику выключить свет и включить генератор. Вскоре трубки с разреженным газом довольно ярко засветились — так было впервые осуществлено освещение электрическим током без проводов. Впоследствии Тесла всегда сопровождал свои выступления демонстрациями свечения таких трубок и больших ламп, держа их просто в руках и зажигая от отделенного генератора тока высокой частоты. Например, на Колумбовой выставке он представил публике трубки, изогнутые в виде латинских букв, составляющих фамилии великих физиков — Франклина, Герца и самого Гельмгольца, который и был тогда президентом Конгресса по электротехнике. А на собрании Национальной ассоциации электрического освещения он показывал, как при пропускании через собственное тело огромных "доз" электричества из его вытянутых пальцев вырываются искры и даже целые молнии, причем никаких болезненных ощущений ученый не испытывал — разве что легкое покалывание в кончиках пальцев.
Добившись большого успеха в создании и использовании токов высокой частоты, Тесла решил отомстить Эдисону за препятствия в работе и обман с премиальными (см. главу 2 части 3). Полем битвы стала лампочка накаливания Эдисона, к тому времени выпускавшаяся в огромных количествах и казавшаяся незаменимой. Демонстрируя свечение газоразрядных трубок под действием своих токов, он прямо заявил, что самым ненужным элементом в электролампе является именно нить накаливания! Эдисон слабо отбивался, уверяя, что Тесла не открыл ничего особо нового (это неправда) и что тесловские трубки не смогут составить конкуренцию его лампочкам, т. к. дают мертвый белый свет, в отличие от красивого желтоватого ламп накаливания. Нельзя не признать, что этот аргумент Эдисона продолжает действовать и сейчас, хотя люминесцентные лампы — а именно люминесцентные лампы изобрел Тесла, работают годами и потребляют ничтожно малое количество электроэнергии. Первые промышленные образцы этих ламп были созданы незадолго до Второй мировой войны во Франции. Но альтернативой лампам накаливания, КПД которых хорошо если достигает 5 %, стали не простые люминесцентные лампы, а с добавлением паров натрия, которые дают уже вполне сносный желтый цвет и КПД которых 25 %. Кроме того, не так давно появились и люминесцентные лампочки, которые можно вворачивать в обычный электрический патрон. Так что время окончательной победы ламп Теслы еще впереди, а что такая победа состоится, можно быть совершенно уверенным.
Тесла является бесспорно признанным создателем отдельного нового направления в электротехнике — применения токов высокой частоты. Его опыты и устройства произвели на мировое сообщество электротехников огромное впечатление. Даже в далекой России показывались опыты Теслы, причем не кем иным, как одним из создателей радиосвязи Александром Поповым. Оказывается, Попов побывал на Колумбовой выставке, разобрался в устройстве тесловских агрегатов и в 1901 году продемонстрировал их действие е Петербурге на Съезде естествоиспытателей и врачей. Грант Цверава (2) цитирует:
"Особенно эффектно А. С. Поповым были показаны опыты Н. Теслы — кисти искр, вырывающиеся из конца вторичного проводника, достигали почти метровой длины, электрическое поле токов высокого напряжения наполнило всю громадную аудиторию, розданные слушателям пустотные трубки двухметровой длины светились в самых отдаленных углах". В Лондоне изобретатель термоса, сосуда для хранения низкотемпературных жидкостей, Дьюар уговорил Теслу выступить на заседании Королевского общества (в сущности, это английская Академия наук), причем Тесле была оказана великая честь расположить свои устройства для показа опытов на столе, где работал великий Фарадей, и сидеть в его кресле. Вообще-то Тесла не собирался читать лекцию в Английской академии и, будучи большим упрямцем, долго не соглашался с аргументами Дьюара. Но после того, как тот достал не допитую самим Фарадеем бутылку виски и угостил его этим драгоценным напитком, Тесла уже не мог отказаться.
Разумеется, английским академикам понравились эффектные демонстрации Теслы. Однако они были все-таки учеными, а не просто зрителями цирковых представлений, и сумели разобраться в специфике работ изобретателя. Так, лорд Рэлей, сам автор нескольких открытий в физике, говорил Тесле, что ему необходимо прекратить разбрасываться, и сосредоточиться на воплощении в жизнь для начала какой-нибудь одной из его великих идей. Как мы знаем, Тесла не воспользовался советом и несколько десятков его изобретений так и были похоронены в архивной пыли.
После лондонской лекции слава Теслы достигла величайших высот. В Белграде, куда Тесла отправился после лекции, его встретили как национального героя (кстати, в тот момент Тесла уже получил американское гражданство), пригласили на специально созванное заседание правительства, наградили медалью. В его честь была написана ода лучшим тогда югославским поэтом Йовановичем. Но, как известно, нет пророка в своем отечестве. Оказавшись в родной Хорватии, великий изобретатель предложил построить электростанцию на Плитвицких водопадах. Разумеется, она должна была питать столицу Загреб трехфазным переменным током высокого напряжения. Однако хорваты свои первые электростанции построили не на водопадах и на однофазном токе.
Беспроводная передача энергии, реализованная Теслой, привела также к созданию основ технологии индукционного нагрева. В 1898 году в журнале "Электроинженер" Тесла описал обнаруженный им высокочастотный нагрев металлов и изоляторов. Через двадцать лет об этом явлении вспомнил американский изобретатель Нортруп, который когда-то присутствовал на одной из лекций Теслы. Работая над созданием новых способов плавления металлов, желательно без контакта с нагреваемой поверхностью, он построил электропечь с питанием от генератора Теслы.
Привычка не доводить до конца свои исследования лишила Теслу возможности стать открывателем одного из важнейших явлений — рентгеновского излучения. Тесла установил, что в люминесцентных лампах с тугоплавкими электродами, вносимых в поле токов высокой частоты, возникают три вида излучений — видимый белый свет, ультрафиолет и особые лучи, дающие странные отпечатки на экранах в коробочках, помещенных рядом с лампами. Тенеобразное изображение, вызываемое этими особыми лучами, позволяло как бы видеть предметы в непрозрачных ящиках. Сейчас мы понимаем, что изобретатель обнаружил то, что довольно скоро, в 1895 году, подробно исследовал и описал Рентген. После публикации наблюдений Рентгена и прочтения этой статьи Тесла вернулся к экспериментам с особыми лучами и даже, судя по всему, одним из первых предложил использовать рентгеновские лучи для обнаружения новообразований и скрытых переломов костей конечностей и других частей скелета человека. Он также предположил, что эти лучи могут стать даже и средством лечения, но это не подтвердилось. Наоборот, лишь через немалое количество времени выяснилось, что "рентген" довольно вреден, и сейчас им стараются не злоупотреблять.
Интересно, что самому Рентгену очень пригодились высокочастотные генераторы Теслы. Он сообщал, что использование этих генераторов в рентгеноскопии значительно упростило конструкцию рентгеновских установок и резко повысило безопасность работы с высокочастотными токами. Тесла же научился получать гораздо более четкие и эффектные фотографии в рентгеновских лучах, поразившие самого Рентгена, который получил их от изобретателя.
Отметим, что эти эксперименты Тесла проводил в новой лаборатории, которую построил на кредит от "Компании Ниагарских водопадов". Дело в том, что его старая и лучше всего оборудованная лаборатория на 5-й авеню Мэнхэттена сгорела весной 1895 года. Пожар уничтожил почти все здание, практически все приборы и бумаги Теслы, погибли его механический осциллятор (генератор), новый метод беспроволочной передачи сигналов на далекие расстояния (радио), новый метод электрического освещения и метод исследования природы таинственного явления электричества (в те годы еще не был открыт даже электрон!). Однако изобретатель заявил, что он держит все свои записи в памяти и вскоре их восстановит. Безвозвратно погибли лишь письма из дома и бюст его матери. Почему Тесла возил всюду с собой бюст матери, а не фотографию — не ясно. Фрейдист бы тут разыгрался на славу.
По счастливой случайности, сам Тесла не пострадал при пожаре, поскольку той ночью он не стал задерживаться в лаборатории и спокойно спал в гостинице. "Две готовых развалиться кирпичные стены и разверстая пропасть, полная черной воды и дымящегося масла, — вот что можно было увидеть в то роковое утро. Больше ничего не осталось от лаборатории, которая для всех, кто посещал ее. была одним из самых интересных мест на земле", — так писала газета. Чтобы хоть немного подбодрить Теслу, сербский Союз почт и телеграфа произвел сенсацию, соединив проходившие одновременно концерты в двух разных городах страны "громкой" телефонной связью, так что их могли слушать жители обоих городов. Союз отправил об этом сообщение Тесле в Нью-Йорк, ошибочно полагая, что телефон изобрел их соотечественник, хотя это был Александр Белл (в 1876 году), а Тесла лишь сделал некоторые усовершенствования к его схеме передачи звука по проводам.
По городу тут же разнеслись слухи, что пожар в лаборатории организовали люди Эдисона. Благородный Тесла сразу же отверг эти предположения, назвав своего бывшего начальника слишком порядочным человеком и великим изобретателем, который не мог бы опуститься до такой низости. Стоит отметить, что в некоторых враждебных Тесле изданиях появились и намеки противоположного характера, а именно, что Тесла не случайно ушел так необычно для себя рано из лаборатории и что не он ли ее сам… Для чего? А чтобы свалить на пожар вину за не выполненные им обещания предоставить общественности новые фантастические изобретения. Следует признать, что некоторая доля иезуитской логики в таком предположении есть, но верить в это не хочется. Еще и потому, что в том, 1895 году, Тесла еще не давал множества тех полубезумных обещаний, которые уверили многих специалистов в электротехнике, что их коллега помрачился в разуме. При этом он больше ничего не поджигал — разве что через несколько лет сжег генератор электростанции в Колорадо, но исключительно из-за ошибок в расчете мощности. К тому же он сам этот генератор и починил. Противоречит этой некрасивой версии и тот факт, что помещение и оборудование не были застрахованы, а убытки составили от четверти миллиона до миллиона долларов, — правда, это оценки самого Теслы, который всегда был склонен преувеличивать стоимость своей аппаратуры. Забегая несколько вперед, приведем ответы изобретателя на процессе по поводу долгов за землю под его станцию на Лонг-Айленде и за проживание в "Уолдорф-Астории". Владелец земли и администрация гостиницы были уверены, что станция фактически принадлежит им, и перепродали землю, а башню-передатчик Теслы просто снесли и продали ее детали за гроши. Тесла же считал, что цена его оборудования составляла не менее 350 тысяч долларов. Когда его спросили, помнит ли он день передачи собственности, он ответил, что да. Он отчетливо помнит, как сообщил арендодателю, что станция стоит очень дорого и по сравнению с ее стоимостью его долги — просто пустяк, и что он ожидает от станции дохода до 30 тысяч долларов в день, если она будет достроена. И это об установке, которая никогда не работала и не заработала бы в соответствии с идеями Теслы, поскольку идеи были полностью ошибочными. Конечно, можно сказать, что Тесла не знал об их ошибочности, но строить дорогущую станцию для передачи энергии через Землю, не имея ни одного мало-мальского экспериментального доказательства справедливости своей теории, по меньшей мере неразумно.
Приведем еще один важный аргумент против выдумок желтой прессы. Согласно полицейскому протоколу, пожар начался не в лаборатории, а на нижнем этаже, в прачечной. Существует достаточно убедительная версия, что во всем был виноват ночной сторож, который курил около мусорного ведра с промасленной ветошью и стряхивал пепел в это ведро.
Новая лаборатория была готова уже в следующем году, и Тесла мог бы воспользоваться предложением одного из руководителей Ниагарской компании о получении еще одного кредита, если изобретатель примет на работу его сына. Известный своим крайним индивидуализмом и неумением работать в коллективе, Тесла отказался от выгодного предложения. Не внял он и советам коллег о необходимости довести до практической реализации хотя бы одного из своих изобретений, которое могло бы дать ему постоянный доход. Например, он мог бы применить уже разработанную им радиосвязь для сообщений о ходе международных яхтенных состязаний, проводящихся вблизи Нью-Йорка. Великий изобретатель не хотел терять время на такие, как он считал, мелочи и стремился разработать всемирную систему применения токов высокой частоты. В принципе, он хотел создать систему передачи не слабых телеграфных или телефонных сигналов, но больших количеств энергии, достаточных для питания двигателей и других мощных электрических устройств.
В те годы не существовало способов получения значительных мощностей на коротких волнах. А передача энергии для силовых целей не может проводиться так же, как передача радиосообщений. Радиоволна не в состоянии выполнить заметную работу, в приемнике ее приходится усиливать с использованием сетевого или аккумуляторного электричества. Тесла полагал, что он сможет передавать электроэнергию без проводов и с малыми потерями, используя колебания потенциала земного шара, однако эти его идеи "основаны на недоразумениях и ошибках", как сказано в предисловии к (3). Другое дело, что алхимик Бранд искал философский камень в моче и камня не нашел, зато открыл элемент фосфор. Так и Тесла в своих опытах по передаче электроэнергии открыл принципы работы целого ряда новых электротехнических аппаратов.
Глава 6Генератор на мосту
В предыдущей главе мы отмечали, что пожар на 5-й авеню уничтожил генератор механических колебаний Теслы, и сейчас расскажем, что это за штука. Электрический осциллятор, его генератор токов высокой частоты, обсуждался в той же главе и представляет собой устройство для создания колебаний электрического тока, а механический осциллятор создает механические колебания, колебания материальной среды сверхвысокой частоты. Тесла построил такой осциллятор, который был способен генерировать ультразвук.
Считается, что при совпадении частоты собственных колебаний какого-либо агрегата или сооружения с внешними колебаниями наблюдается явление резонанса, увеличивающее эти колебания во множество раз. Классический пример — запрещение воинским подразделениям проходить по мостам строем. При случайном совпадении частоты колебания моста с колебаниями, вызванными строевым шагом, мост вполне может разрушиться. В некоторых книгах по истории Санкт-Петербурга сообщается, что такое указание было введено в воинский устав Российской империи, а также самых разных стран мира в результате не умозрительных рассуждений, а после реального разрушения Египетского цепного моста через реку Фонтанку в 1905 году. Эта версия не находит подтверждения у специалистов, поскольку лошади — а двигалась именно кавалерия — не умеют ходить в ногу. Однако само явление разрушения строений и предметов под действием резонансных колебаний неоднократно подтверждалось и надежно воспроизводится в лаборатории. В том числе в лаборатории Теслы, который утром, по приходе в лабораторию, включал свои механические осцилляторы и с интересом смотрел, какие из деталей аппаратуры и конструкции помещения начинают угрожающе раскачиваться.
Результатом этих наблюдений было открытие явления избирательного резонанса. Явление заключается в том, что с помощью регулировки частоты внешних механических колебаний можно разрушить какой-либо объект, совершенно не повредив соседние, собственные колебания которых с заданной частотой не совпадают. Лучше всего такие разрушения получаются при использовании ультразвука, и сейчас ультразвук используют для резки металлов, например вырезания в листе стали отверстий сложной формы, для приготовления эмульсий масла в воде, для очистки готовых изделий и даже для стирки (ультразвуковые стиральные машинки) — но последнее является в большей степени рекламным трюком. Мощность таких машинок невелика и не позволяет отделить частицы грязи от белья, а эффект все же некоторого реального отстирывания связан на самом деле с обычным стиральным порошком, который производители машинок разумно рекомендуют добавлять в тазик. Классический пример супа из топора.
Но Тесла тут ни при чем. Он-то установил реальные возможности механических осцилляторов и предложил реальные пути их использования. Например, однажды он обнаружил эффект отражения ультразвука от одной из стен лаборатории. Это навело его на мысль, что с помощью отраженных ультразвуковых волн можно обнаруживать невидимые предметы — например подводные лодки! Как обычно, высказав эту идею, он ее тут же забросил и до практического воплощения не довел, как и во многих других случаях. Справедливости ради отметим, что Тесла был не единственным, кто предполагал использовать отражение ультразвука и предсказал эхолот.
Однажды вместе со своим помощником Джорджем Шерфом он разместил свой генератор механических колебаний на центральной балке своей новой лаборатории на Хьюстон-стрит и настроил генератор на частоту, при которой балка начала гудеть. Со временем гуд охватил все здание, а дальше… есть несколько версий развития событий. По одной из них, начали трястись все окружающие лабораторию здания, в конструкции которых применялись аналогичные балки, потом примчались пожарные, но пол в лаборатории Теслы провалился и в подвал ухнули несколько тонн его оборудования. От полного разрушения здание спасло только то, что Тесла кувалдой разбил свой генератор — для простого выключения требовалось некоторое время, а времени явно уже не было.
Согласно другой версии, до разрушения пола дело не дошло, поскольку в момент уже опасных колебаний балки в лабораторию ворвались полицейские, которые увидели, как Тесла разбивает свое детище. При этом полиция прибыла не по доносу соседей из жутковато вибрирующих домов, а по собственной инициативе — в полицейском участке через дом от лаборатории некие конструкции также пришли в резонанс с генератором Теслы, а про эксцентричного ученого по соседству полиция уже хорошо знала.
Тесла приберег для рекламы и собственную версию. Якобы он однажды пошел к строительной площадке на Уолл-стрит, где возводили дом высотой в десять этажей со стальным каркасом, взяв с собой генератор механических колебаний размером с будильник. Найдя подходящую балку, он прикрепил к ней генератор и настроил прибор на частоту собственных колебаний балки (определяется по звуку). Постепенно дрожание балки усилилось, амплитуда колебаний достигла уже заметных величин, и рабочие в панике разбежались — так Тесла описывал свои действия репортеру крупной нью-йоркской газеты. Был генератор и удалился. А репортеру сообщил, что еще минут десять, и здание бы рухнуло, и что таким осциллятором он мог бы обрушить Бруклинский мост в реку минут за сорок.
Разумеется, если Тесла и не придумал всю эту историю про десятиэтажку, которая может рухнуть от дрожания карманного осциллятора, возможности своего устройства он здорово превысил. Помимо совпадения частоты колебаний, необходима еще и их мощность, которую устройство такого размера выдать никак не может. Кроме того, и у балки, и у моста наверняка очень низкая добротность — характеристика системы, показывающая, насколько широка полоса частот, при которых может возникнуть резонанс. Ну, мы же знаем гонор великого изобретателя. Тем более что Бруклинским мостом он не ограничился — а я был на этом мосту и должен сказать, что даже сейчас, через сто с лишним лет после окончания строительства он производит гигантское впечатление, да и остается гигантским. Во всяком случае, такой же висячий Крымский мост в Москве втрое (!) меньше.
Так вот, Тесла пишет (1): "Колебания земной коры происходят с периодичностью приблизительно раз в один час сорок девять минут. И если я нанесу удар в это мгновение, по земле пройдет волна сокращения и вернется ровно через час и сорок девять минут, но усиленная. Земля, как и все остальное, находится в состоянии вибрации. Она все время расширяется и сжимается. Теперь предположим, что в тот самый момент, когда она начинает сжиматься, я взорву тонну динамита. Это ускорит сжатие, и через час и сорок девять минут последует точно такое же ускоренное расширение. Когда расширение затихнет, я взорву еще одну тонну, а потом повторю это несколько раз. Разве можно сомневаться в том, что произойдет? Я лично не сомневаюсь. Земля расколется надвое. Впервые в истории человечества появилось знание, которое способно влиять на космические процессы".
Этот текст был надиктован репортеру в 1897 году, кстати, всего через четырнадцать лет после завершения строительства Бруклинского моста. Тесла спрашивает, можно ли сомневаться, — да, можно не сомневаться, что ничего описанного им не произойдет. Лишь в XX веке, когда прошли две мировые войны и на поля сражений и мирные города были сброшены не тонны, а тысячи и тысячи тонн динамита, люди смогли оценить устойчивость нашей планеты к воздействию ее "разумных" обитателей. Артиллерийские подготовки перед некоторыми битвами продолжались часами, а то и по полдня, и наверняка часть боеприпасов взрывалась через указанные Теслой один час сорок девять минут. И ничего не случилось. Тесла в который раз решил поразить читателей своими идеями, и возможно, что тогда кто-то действительно был потрясен. Хотя профессиональные физики только усмехались, читая тесловские предсказания и отлично понимая, что все это пиар, хотя слова такого тогда, кажется, еще и не было. А знание, которое появилось впервые в истории и оказалось способным влиять на космические процессы, появилось только через 48 лет, когда были взорваны первые атомные бомбы. Эти средства уничтожения уже способны повлиять, во всяком случае, на состояние атмосферы и климата на Земле ("ядерная зима") — пожалуй, это действительно уже космический уровень.
Откуда Тесла взял величину один час сорок девять минут, мы никогда не узнаем. Уже хотя бы потому, что одного-единственного периода собственных колебаний Земли не существует. Еще в начале прошлого века (при жизни Теслы!) было вычислено, что период собственных колебаний стального шара размером с Землю будет равен одному часу. После землетрясения на Камчатке было обнаружено, что есть собственные колебания планеты с периодом 57 минут, а после чилийского землетрясения в 1960 году — что есть собственные колебания с периодом 54 минуты. Земля не стальной шар, и у нее много (целый спектр) собственных колебаний.
Про странные, временами более чем опасные развлечения Теслы в лаборатории ходит множество легенд. Одна из них связана с великим писателем Марком Твеном, с которым Тесла познакомился в некоем "Клубе игроков" и затем подружился у Джонсонов (см. далее). Марк Твен неоднократно посещал лабораторию, и однажды Тесла продемонстрировал ему вибрирующую платформу, устроенную следующим образом: на прорезиненные подушки, которые обычно заполняли кислородом для лечения больных на дому, изобретатель положил плоскую деревянную платформу. В подушки периодически подается и откачивается сжатый воздух, так что они попеременно надуваются и сдуваются, обеспечивая платформе колебания в вертикальном направлении. Тесла объяснил Твену, что однажды он решил постоять на этой платформе и обнаружил стимуляцию собственной перистальтики кишечника. Простыми словами это означает, что ему потребовалось срочно посетить туалет. Заинтересованный Твен захотел повторить эксперимент Теслы, а тот удержался от объяснений, что эффект возникнет едва ли не за секунды. Так и вышло, почти сразу же писателю потребовалось убежать в известное помещение.
Такого рода истории, казалось бы, не имеют прямого отношения к изобретениям и открытиям Теслы, однако в данном случае его работы привели к созданию терапевтических аппаратов. Интересно, что не лишенный деловой хватки Марк Твен в те дни собирался в Европу для чтения лекций и просто отдохнуть. А поскольку ему предстояло общаться с дамами из высшего света, он предложил Тесле продавать в Европе его электротерапевтические устройства. Изобретатель не был против, хотя мы так и не знаем, сумел ли Твен продать хотя бы один прибор. Говорилось, что и "стенд для безлекарственной стимуляции перистальтики" Твен тоже собрался показать во время своей поездки, однако и в данном случае история умалчивает, воспользовались ли великосветские дамы Парижа, Лондона и Берлина подушками Теслы. А с Марком Твеном великий ученый дружил до самой смерти и даже пытался послать ему деньги — уже после смерти писателя, о которой 86-летний старик просто забыл.
Помимо экспериментов над своей перистальтикой, Твен участвовал в другом интересном предприятии Николы Теслы, который решил впервые в мире использовать для фотографирования свет своих люминесцентных ламп. Фотографии предполагалось разместить в различных электротехнических и общих изданиях с целью рекламы ламп. Многие друзья Теслы настойчиво рекомендовали ему выставить эти лампы на продажу и иметь постоянный доход. Уже тогда изобретатель понимал, что фотографии должны носить гламурный характер, т. е. фотографировать следует известных людей, особенно светскую публику. До полуголых девок и фотографий детей олигархов дело тогда не дошло, было принято решение снимать знаменитого писателя Марка Твена, поэта Фрэнсиса Мариона Кроуфорда, актера Джозефа Джефферсона и кое-каких других светских львов и львиц. Первые фотосессии состоялись весной 1894 года, но в прессе фотографии появились только через год. Разумеется, больше других публику интересовал Марк Твен, но самому Тесле чрезвычайно понравились снимки Джозефа Джефферсона, одиноко стоящего в темноте и лишь контурно обозначенного на фотографии. Сейчас, наверное, эти снимки назывались бы "стильными" и ценились за хитроумно выставленное освещение, но тогда их оценил только сам Тесла. А так, вообще-то. снимки оказались темноватыми.
Разумеется, Тесла с привычным пренебрежением к заработку (но не к кредитам!) никакой продажи своих ламп организовывать не стал. К тому времени начала поступать из печати книга, написанная им вместе с Т. К. Мартином под названием "Изобретения, исследования и статьи Николы Теслы", и этот Мартин собирался заработать хотя бы на гонорарах и, может быть, фотографиях. Мало что из этого вышло.
В том же году его верный товарищ Джонсон начал хлопотать о присуждении Тесле степени доктора наук каким-нибудь авторитетным американским университетом — европейские и второстепенные американские награды у него уже были. Возникла идея убедить Колумбийский колледж — так тогда назывался Колумбийский университет Нью-Йорка, входящий в престижную "Лигу плюща". Основанием для уговоров именно "Коламбии" было то, что свою первую лекцию по электрохимии Никола Тесла прочел именно здесь и что именно в Нью-Йорке находится его лаборатория. Короче, все обо всем договорились, и ученый получил почетную докторскую степень от Колумбийского колледжа, а через небольшое время удостоился такой же чести и от другого участника "Лиги плюща" — Йельского университета. Тесла получил почти все, к чему стремился. Его постоянно печатали лучшие общественные и специализированные электротехнические журналы, и он был принят в домах элиты Нью-Йорка и Новой Англии. Фактический импресарио изобретателя Т. К. Мартин даже уговорил Теслу позировать для скульптора Вольфа.
Следующей проблемой, которой решил заняться Тесла в своей новой лаборатории, было определение частоты земных колебаний. Мартин писал, что ученому удалось добиться потрясающих результатов, которые показали, что ему удалось потревожить электрическое поле Земли. И что при помощи нового осциллятора можно не только передавать различные сообщения, но и влиять на погоду, а также в перспективе сообщаться с другими планетами. Все эти рассуждения Мартина, основанные на формулировках Николы Теслы, явно свидетельствовали о уже начавшихся изменениях в деятельности кое-каких отделов головного мозга великого изобретателя. Не автор этой книги, а современный Тесле журналист прямо написал тогда, что предсказания ученого кажутся бредом сумасшедшего. А другой писака подчеркивал, что никакого практического результата не последовало за блестящими экспериментальными исследованиями, которыми Тесла "ослеплял весь мир". Можно было бы не обращать внимания на эти высказывания, тем более что в других публикациях ученого открыто называли гением и непрактичным, но великим энтузиастом и провидцем. Кроме того, нам кажется, что Тесла еще и получал мазохистское удовольствие от чтения статей, в которых его представляли безумцем, но ведь представляли же именно его! Можно полагать, что Никола Тесла одним из первых, а среди настоящих ученых, не шарлатанов, так наверняка первым, понял, что для имиджа неважно, ругают тебя или хвалят. Важно лишь, чтобы почаще вспоминали. Изобретателем гламурного электричества можно было бы назвать великого серба. Или гламурным изобретателем.
Существует и другая формулировка, удачно предложенная Марком Сейфером (1): Тесла является противоречивой натурой — отшельник против прирожденного актера. Работал всегда один, разве что с небольшим штатом часто меняющихся помощников, не умел работать в коллективе, не создал научной или изобретательской школы, но был, во всяком случае в первый период своей работы, великим ученым и изобретателем, а также неподражаемым шоуменом и гениальным эстрадником. Он даже а те годы безмятежного XIX века догадался о необходимости скрывать свои существовавшие, а чаще и не существовавшие изобретения, обосновывая это борьбой с пиратами, похищавшими его идеи и зарабатывавшими на его патентах. При том, что сам он мало заботился о взыскании положенных ему отчислений при реальном использовании этих патентов, считая такое крохоборство недостойным ученого. И такое поведение Теслы заслуживает уважения. Пираты действительно были, но секретничанье и таинственность, которые Тесла напускал на свои разработки, призваны были частенько прикрыть отсутствие реальных прорывов. В соответствующем месте мы еще опишем некоторые из "изобретений" Теслы, которые существовали только в его воображении и не реализованы даже сейчас по банальной причине — этого не может быть, потому что этого не может быть никогда, т. е. запрещено твердо установленными физическими законами.
Нежелание заниматься доведением изобретений до практической реализации, в частности устранение от работ по коммерциализации люминесцентных ламп, не прошло для Теслы даром. Кончились 100 тысяч долларов, предоставленных Адамсом (как потом выяснилось, финансистом Дж. П. Морганом через Адамса), кончились и другие небольшие деньги, которые Тесла одноразово получал за некоторые свои установки. Исследователи творчества изобретателя пишут, что его жизнь, по признанию самого Теслы, "была непрерывными переходами от агонии неудач к блаженству успехов". В апреле 1899 года, когда "агония неудач" достигла своего максимума, совершенно неожиданно пришло "блаженство успеха".
Глава 7Телеавтоматы
Мы привыкли к приставке "теле-" (от греческого "далеко") и, встречая ее в тексте, не удивляемся словам "телевизор" или "телескоп". Впервые услышав слово "телеавтомат", каждый из нас, скорее всего, подумает о каком-то усовершенствовании домашних телевизоров или автоматических приставок для видеоигр. Однако придумавший термин "телеавтомат" Тесла имел в виду совсем другое. Он впервые предложил и осуществил на модели способ управления механизмами по радио, т. е. являлся родоначальником первых радиоуправляемых моделей судов и самолетов и современных беспилотных летательных устройств. Самые последние беспилотные самолеты-шпионы и самолеты-убийцы часто действуют уже без управления по радио, а используют заложенные в них компьютерные программы, однако управление по радио не ушло в прошлое и, скорее всего, полностью никогда не исчезнет. Скажем еще раз, что придумал такое управление Никола Тесла, хотя слово "телеавтомат" давно не используется.
В 1898 году в Нью-Йорке проходила ежегодная выставка достижений в области использования электроэнергии. В выставочном центре Медисон-сквер-гарден, первоначально предназначенном для проведения спортивных соревнований, был устроен довольно большой бассейн с причалом, как в традиционном морском порту. Только размеры этого причала были несопоставимы с размерами "взрослых" причалов. Но для демонстрации изобретения Теслы именно такое сооружение и требовалось — к этому причалу было пришвартовано довольно странное суденышко с тремя мачтами без парусов, напоминавшее старинный угольный утюг без ручки, зато с лампочками на носу и на корме. Это и была радиоуправляемая модель корабля великого изобретателя — его первый вариант телеавтоматов. На эту модель Тесла получил патент в США и шести европейских странах, включая Российскую империю.
Действовала модель следующим образом. Внутри корпуса были расположены радиоуправляемые сервомоторы, на которые Тесла, стоя на бортике бассейна, подавал радиосигналы с портативного передатчика — абсолютно так же, как это происходит и сейчас, век с лишним спустя. Сервомоторы (от латинского "сервус" — "слуга") представляют собой двигатели, предназначенные не для приведения аппарата в движение, а для передачи команды на обычный, уже гораздо более мощный, электродвигатель. Принимала сигнал центральная мачта суденышка, которая на самом деле была антенной. Подавая различные сигналы, Тесла мог заставить свой "утюг" двигаться с различной скоростью, в любых, включая обратное, направлениях, зажигал и гасил лампочки, демонстрируя возможность подачи оптического сигнала другим судам. Короче, для 1898 года это было совершенно потрясающее, невиданное, просто классное изобретение, которое вызвало огромный интерес публики, в том числе весьма специфической — разумеется, военной.
Хотя до возможности боевого применения модели Теслы додумался не какой-нибудь флотский адмирал, а газетчик из "Нью-Йорк таймс" — не простой репортер, а научный обозреватель. Если сам Тесла говорил, что его изобретение может быть использовано для связи и управления кораблями в труднодоступных районах, для осуществления научных и торговых задач, для доставки писем, посылок, продуктов питания, для спасательных работ, то научный обозреватель с ходу предложил загрузить лодочку динамитом и направить ее на вражеский корабль, причем лучше всего этот телеавтомат слегка притопить, т. е. превратить его в подводную лодку. Война тогда действительно была в самом разгаре, Америка воевала с Испанией за обладание Филиппинами и Кубой.
В тот момент Тесла не слишком поддавался патриотическому угару, вообще был полон пацифистского идеализма (чуть позже его отношение к военным изобретениям изменится) и опубликовал протест, в котором назвал свои телеавтоматы не орудием войны, а как раз средством ее обессмысливания. Хотя он отлично понимал, и даже писал об этом, что телеавтоматы весьма пригодны для ведения определенных боевых действий. И уже спустя пару месяцев представил проект радиоуправляемой торпеды, однако немедленно подвергся критике в печати. Надо сказать, справедливой — Теслу укоряли в недоработке до действующих образцов его предшествующих изобретений.:
Приоритет Теслы в создании радиоуправляемых аппаратов неоднократно пытались оспорить, причем иногда удачно. "Лучше" всех это удалось вице-адмиралу ВМФ США и светскому льву Брэдли А. Фиску, который сумел запатентовать абсолютно такую же радиоуправляемую торпеду, подав заявку всего лишь три месяца спустя после демонстрации телеавтомата Теслы. Мало того, со временем приоритет изобретателя был вовсе забыт и восстановлен лишь в 60-е годы прошлого столетия с выходом книги Бенджамина Ф. Меснера "О ранней истории управления по радио". Ценность признания Меснера велика еще и потому, что сам автор книги был выдающимся электротехником и автором двух сотен патентов по радиотехнике.
Иной изобретатель, не страдающий отсутствием коммерческой жилки и предпринимательского чутья, начал бы "разрабатывать жилу" до конца и зарабатывать на своих телеавтоматах большие деньги, тем более что военные уже намекали Тесле на возможность прибыльного сотрудничества. Но наш серб был не таков. Вдохновленный своим выдающимся успехом, ученый отложил свою лодочку в сторону и принялся сочинять и конструировать антропоморфный автомат, который управлялся бы по радио и был способен производить все действия человеческого тела. Через сто лет мы увидим воплощение этой идеи в многочисленных японских, американских и даже отечественных роботах, которые мало того что передвигаются и способны пожать протянутую руку, налить воды в стакан и т. д., но уже начали и разговаривать. А ведь Тесла предугадал и это! Так и написал в одной журнальной статье, что собирается создать автомат, который будет иметь схожий с человеческим мозг (он называл этот орган автомата "элементом") и будет "нагружен" человеческими знаниями. Мы уже не удивляемся, что Тесла совершенно спокойно написал о простоте создания этого элемента! Которого, как обычно, он не сделал.
Конечно, выполнить эту поставленную перед самим собой задачу Тесла не смог — до появления кибернетики и компьютеров было очень далеко, но иногда задумываешься, с чего бы это он был так уверен в успехе своих многих начинаний? Вдруг он действительно был марсианином и просто уже знал ответ? А не воплощал свои идеи в "железо" просто потому, что считал это преждевременным или полагал, что от него требуется только дать первоначальный толчок, а земляне сами все обязаны придумать.
Хотя мне ближе другая точка зрения. Уверенность в успехе у Теслы основывалась на его (заслуженном) самомнении и целом ряде безусловно блестящих изобретений. Предсказать же создание мыслящих автоматов было вовсе не сложно — давно уже, в XVII веке, был придуман Голем, еще в 1818 году Мэри Шелли написала про своего Франкенштейна. Да и вообще искусственные люди появлялись уже в папирусах Древнего Египта и на шумерских глиняных табличках. А не изготовил человекоподобный автомат Тесла, как обычно, точно по тем же причинам, что и не осуществил множество своих других изобретений. Сейчас сказали бы, что он "разбрасывался", терял интерес к идее и переключался на следующую. Кроме того, в 1898 году он и не мог изготовить антропоморфного робота, это было абсолютно невозможно при тогдашнем уровне развития науки и техники.
Однако даже в рассуждениях о будущем телеавтомате Теслы можно обнаружить описания открытий, сделанных исключительно путем мысленного эксперимента. Самое главное из них — использование для управления автоматами радиоволн с разными частотами, что позволяет управлять, например, только рукой робота, не затрагивая, например, ногу. В те годы никто до Теслы не додумался до столь хитроумного использования радиоволн, которое кажется нам сейчас банальным. Собственно говоря, вращая ручку настройки радиоприемника, мы именно изменяем волну (частоту) принимаемого радиосигнала и управляем таким образом радиоэфиром. При этом "Серебряный дождь" не мешает нам слушать Би-би-си или какое-нибудь радио "Кекс".
В литературе содержатся сведения о развитии Теслой своих идей в области радиоуправляемых судов, однако, по всей видимости, это ошибка. В 10-х годах прошлого века на восточном побережье Америки проводились эксперименты с управлением кораблями (скорее, все-таки корабликами), которые уплывали в Атлантический океан на 40–50 километров, маневрировали, а потом по команде с суши возвращались в нью-йоркскую гавань. Наблюдение за маневрами осуществлялось с обычного катера. Однако эти эксперименты проводил уже не сам Тесла, а его последователи — прошло уже более 10 лет с демонстрации изобретения телеавтоматов, и за это время подхватившие эстафету последователи сумели кардинально усовершенствовать радиоуправление. В те годы и само радио стало обыденной, практически рутинной принадлежностью человеческого быта.
Помимо разработки человекообразных радиоуправляемых роботов, ученый нашел в те годы и другой вариант использования своих телеавтоматов. А именно, в 1900 году он начал разрабатывать конструкцию летательного аппарата, управляемого по радио. В одной из не опубликованных в открытой печати записок, обнаруженной много позже в его архиве, он писал, что можно построить самолет, который после взлета пролетит тысячи миль и по команде оператора приземлится (или хотя бы просто обрушится на врага) в заданной точке. Совершенно поразительное предвидение — но ведь не имел же он в виду GPS или отечественный ГЛОНАСС? Как это — в заданной точке за тысячи миль, как именно определяется эта точка? Разумеется, об этом Тесла ничего нам не сообщил. Хотя ещё при его жизни немцы придумали специальный винт, число оборотов которого позволяло довольно точно судить о пройденном расстоянии и тем самым выводить ракеты "Фау-1" на цель,
Я нарочно отложил обсуждение самого летательного аппарата до следующего, именно этого, абзаца. Обратил ли внимание читатель на дату "1900 год"? Помнит ли читатель, что первый в истории управляемый полет аппарата тяжелее воздуха был осуществлен братьями Райт через три года, в 1903 году?! А Никола Тесла уже спокойно оснащал несуществующие самолеты радиоуправлением…
Но и это далеко не асе. Братья Уилбур и Орвилл Райты оснастили свой самолет, естественно, обычным бензиновым двигателем с пропеллером. А чем же еще? Пожалуйста: как само собой разумеющееся, Тесла устанавливает на свой (несуществующий!) самолет ракетный двигатель. Не слишком ли много для одной неопубликованной записки? Я забыл добавить, что там же изобретатель написал о еще одной способности своих будущих человекообразных телеавтоматов — они будут самовоспроизводиться.
Конечно, мы уже имеем роботов на машиностроительных заводах, которые по заданной программе изготавливают детали для производства таких же роботов, но до самовоспроизведения все-таки мы еще не добрались. Интересно, как Тесла представлял себе — если, конечно, представлял, а не по своему обыкновению записывал результаты интуитивных озарений, каким именно образом будут его телеавтоматы "рожать" себе подобных? Кстати, этот вопрос можно было бы задать и современным робототехникам. Имеется ли в виду сборка аналога из любезно предоставленных человеком деталей или же это будет половой способ размножения? Или клонирование? К сожалению, Теслу нам об этом уже не спросить.