я постарался ответить на все подобные возражения и привел ряд новых аргументов в пользу своей точки зрения. Тем не менее споры все еще продолжаются [13].
Одна из причин, мешающих людям признать прямое отношение, которое имеет теорема Геделя к нашему математическому мышлению, заключается в том, что в рамках обычной ее формулировки утверждение G( P) не представляет интереса с математической точки зрения. Мало того: оно еще и чрезвычайно сложно для понимания в качестве математического выражения. Соответственно, даже математики предпочитают не «связываться» с подобными выражениями. Однако, существует ряд примеров утверждений геделевского типа, которые легко доступны пониманию даже для тех, чье знакомство с математической терминологией и системой записи ограничивается рамками обычной арифметики.
Особенно впечатляющий пример попался мне на глаза уже после того, как была опубликована эта книга (а также «Тени разума»). Это произошло на лекции Дэна Исааксона в 1996 году. Речь шла об известнойтеореме Гудстейна [14]. Данный пример кажется мне настолько поучительным, что я хотел бы рассмотреть его здесь целиком, дабы читатель имел возможность непосредственно познакомиться с теоремами геделевского типа [15].
Чтобы понять суть этой теоремы, рассмотрим любое целое положительное число, скажем, 581. Для начала мы представим его в виде суммы различных степеней числа 2:
581 = 2 9+ 2 6+ 2 2+ 1.
(Такая процедура применяется для формирования двоичного представления числа 581, а именно, приведения его к виду 1001000101, где единицы соответствуют тем степеням двойки, которые присутствуют в таком представлении, а нули — тем степеням, которых нет.) Далее можно заметить, что «показатели» в этом выражении — т.е. 9,6 и 2 — могут быть, в свою очередь, представлены аналогичным образом (9 = 2 3+ 1, 6 = 2 2+ 2 1, 2 = 2 1); и тогда мы получим (вспоминая, что 2 1= 2)
Здесь все еще есть показатель больший, чем двойка — в данном случае это «3»,— для которого тоже можно написать разложение
3 = 2 1+ 1, так что в конце концов мы будем иметь
А теперь мы подвергнем это выражение последовательности чередующихся простых операций, которые будут
(а) увеличивать «основание» на единицу,
(б) вычитать единицу.
Под «основанием» здесь понимается просто число «2», фигурирующее в исходном выражении, но мы можем сделать то же самое и с большими основаниями: 3, 4, 5, 6…..
Давайте посмотрим, что произойдет при применении операции (а) к последнему разложению числа 581, в результате которой двойки становятся тройками:
(что дает — если выписать его в обычной форме — сороказначное число, начинающееся с 133027946…). После этого мы применяем (б) и получаем
(т.е. по-прежнему сорокозначное число, начинающееся с 133027946…). Далее мы выполняем (а) еще раз и получаем
(это уже значительно большее число, состоящее из 618 знаков, которое начинается с 12926802…). Следующая операция — вычитание единицы — приводит к выражению
(где тройки получаются по той же причине, что и девятки в обычной десятичной записи, когда мы получаем 9999, вычитая 1 из 10 000). После чего операция (а) дает нам
(число, которое имеет 10923 знака и начинается с 1274…). Обратите внимание, что коэффициенты «3», которые возникают при этом, с необходимостью меньше, чем основание (в данном случае 5), и не изменяются с возрастанием последнего. Применяя (б) вновь, имеем число
над которым мы опять производим последовательно действия (а), (б), (а), (б),… и т.д., насколько возможно. Вполне естественно предположить, что этот процесс никогда не завершится, потому что каждый раз мы будем получать все бо́льшие и бо́льшие числа. Однако это не так: как следует из поразительной теоремы Гудстейна, независимо от величины исходного числа ( 581 в нашем примере), мы в конце концов получим нуль!
Кажется невероятным, но это так. А чтобы в это поверить, я рекомендовал бы читателю самостоятельно проделать вышеописанную процедуру, для начала — с числом «3» (где мы раскладываем тройку как 2 1+1, что дает последовательность 4, 3,4, 2, 1, 0); а затем — что более важно — попробовать то же самое с «4» (при этом стартовое разложение в виде 4 = 2 2приводит к вполне закономерно возрастающему ряду 4, 27, 26, 42, 41, 61, 60, 84…, который доходит до числа из 121210 695-ти знаков, после чего уменьшается вплоть до нуля!).
Но что кажется еще более удивительным: теорема Гудстейна фактически является теоремой Геделя для той самой процедуры, которую мы изучали в школе под названием математической индукции, как было доказано в свое время JI.Кирби и Дж. Парисом [16]. Как вы, должно быть, помните, математическая индукция позволяет установить справедливость некоторого математического утверждения S( n) для n= 1, 2, 3, 4, 5… Доказательство проводится в два этапа: сначала нужно проверить справедливость S( l), а затем показать, что, если верно S( n), то должно выполняться и S( n+ 1). Приняв процедуру математической индукции за Р, Кирби и Парис доказали, что тогда G( P) может иметь смысл теоремы Гудстейна.
Следовательно, если мы считаем процедуру математической индукции достоверной (с чем едва ли можно не согласиться), то мы должны верить и в справедливость теоремы Гудстейна — несмотря на то, что при помощи одной лишь математической индукции доказать ее невозможно.
«Недоказуемость» теоремы Гудстейна, понимаемая в этом смысле, вряд ли может помешать нам убедиться в ее фактической справедливости. Наши интуитивные представления позволяют нам расширить действие тех ограниченных приемов «доказательства», которыми мы воспользовались ранее. В действительности сам Гудстейн доказал свою теорему, прибегнув к разновидности метода, который называется «трансфинитной индукцией». В контексте нашего изложения этот метод сводится к систематизации интуитивных ощущений, которые возникают в процессе знакомства с «причиной», по которой теорема Гудстейна и в самом деле верна. Эти ощущения могут родиться практически целиком за счет изучения некоторого числа частных случаев указанной теоремы. И тогда станет видно, как скромная незаметная операция (б) безжалостно «отщипывает» по кусочку от огромной башни «показателей» до тех пор, пока она не начинает постепенно таять и полностью исчезает,— хотя бы на это ушло и невообразимо большое число шагов.
Все это говорит о том, что способность понимать никоим образом не может сводиться к некоторому набору правил. Более того, понимание является свойством, которое зависит от нашего сознания; и что бы не отвечало в нас за сознательное восприятие — это должно самым непосредственным образом участвовать в процессе «понимания». Тем самым, в формировании нашего сознания с необходимостью есть элементы, которые не могут быть получены из какого бы то ни было набора вычислительных инструкций; что, естественно, дает нам веские основания считать, что сознательное восприятие — процесс существенно «невычислимый».
Возможные «узкие места» в этом рассуждении сводятся к следующему. Наша способность (математического) познания может быть результатом вычислительной процедуры или непознаваемой из-за своей сложности; или не непознаваемой, но правильность которой, однако, не может быть установлена; или же ошибочной, хотя почти правильной. Говоря об этом, мы должны прежде всего установить, откуда могут возникать подобные вычислимые процедуры. В книге «Тени разума» я достаточно подробно рассмотрел все такие «узкие места», и я хотел бы порекомендовать эту книгу (равно как и статьюBeyond the Doubling of a Shadow в журнале Psyche [17]) всем читателям, кому интересно было бы ближе познакомиться с настоящим предметом.
Если мы согласимся с тем, что в нашей способности познавать — а следовательно, и в нашей сознательной деятельности в целом — есть нечто, выходящее за пределы чисто алгоритмических действий, то следующим шагом мы должны попытаться выяснить, в каких из наших физических действий может проявляться «существенно неалгоритмическое поведение». (При этом мы негласно предполагаем, что изучение именно «физического действия» определенного вида поможет нам разгадать тайну происхождения сознания.) Я пытаюсь доказать, что таким «неалгоритмическим действиям» нельзя найти место в рамках общепринятых сегодня физических теорий. А значит, мы должны искать соответствующее место, где в научной картине существует серьезный пробел. И я утверждаю, что это «белое пятно» лежит где-то на границе между «субмикроскопическим» миром, в котором правит квантовая механика, и непосредственно воспринимаемым нами макромиром, подчиняющимся законам классической физики.
Здесь необходимо сделать важное замечание. Термин «невычислимый» относится к некоторому классу математических действий, про которые известно — то есть доказано математически,— что они не поддаются вычислениям. И одна из задач данной книги заключается в том, чтобы познакомить читателя с этим вопросом. Невычислимые процессы могут быть полностью детерминистскими. Эта особенность является диаметрально противоположной по отношению к свойству полной случайности, которое характерно для современной интерпретации квантовой механики и возникает при увеличении микромасштабных квантовых эффектов до классического уровня —