Ньютон — страница 9 из 26

Дальше идет ряд сходных, в высшей степени благоразумных наставлений, а во второй части письма содержится перечень вопросов, позволяющих путешественнику узнать политику государства, систему налогов, состояние торговли, цены, обычаи, законы, культуру, отношения между сословиями. Кроме того, Ньютон дает здесь советы изучить технику, приемы кораблевождения, ископаемые богатства каждой страны и технологические процессы, в том числе мифические вроде превращения железа в медь, различных металлов в ртуть.

Это назидательное письмо 27-летнего ученого, который, по-видимому, уже достиг умения подчинять эмоции рассудку и таким образом освободил свой духовный мир для восприятия всевозможных сведений, может вызвать улыбку у нашего современника. Но не только улыбку. Перед нами вовсе не заземленность помыслов. Ньютон освобождает себя от возможных житейских осложнений ради одного-единственного эмоционального и интеллектуального порыва — к поискам истины. Не априорной, не догматической и не прагматической, а подлинной, достоверной истины, которая только и может, как говорил Гегель, заставить сильнее вздыматься грудь. Поиски достоверной, проверенной опытом истины и создают тот поток света и тепла, о котором говорил Эйнштейн, — идущее от Ньютона излучение интеллектуального света и эмоционального тепла.

Упоминавшееся в начале книги стихотворение А. Попа имеет некоторое основание: не все осветилось после появления Ньютона, но то, что осветилось, осветилось сразу. Это было подлинным озарением, не только личным, но озарением исторически развивающегося познания. Творчество Ньютона — сравнительно длительное, более чем полувековое, — все же кажется не мелодией, а аккордом. Идеи Галилея эволюционировали: «Звездный вестник», «Диалог», «Беседы» — этапы этой эволюции. Эволюционировали взгляды Эйнштейна: специальная теория относительности, общая теория, поиски единой теории поля. Пожалуй, единым аккордом были идеи Декарта: период после ульмского озарения в 1619 г., когда появилось «cogito ergo sum», был временем логического развития одного и того же, тождественного себе принципа, ставшего в «Началах философии» основой для единой энциклопедии бытия и познания. Но у Декарта основной принцип позволил «повторить работу бога» — создать универсальную картину мира логическим развертыванием мысли; «внешним оправданием» картезианской физики был не столько эксперимент, сколько апология эксперимента. У Ньютона оптические идеи, концепция тяготения, теория бесконечно малых появились одновременно и в дальнейшем разрабатывались параллельно, не перекрещиваясь (даже теория тяготения была изложена без применения понятий, представлявших собой по существу дифференциальное и интегральное исчисление). В отличие от Декарта Ньютон видел свою задачу не в логическом развитии, а в сложном, длительном экспериментальном и теоретическом доведении новых идей до максимальной достоверности и максимальной количественной определенности. Подобная новая, некартезианская «аккордность» творчества Ньютона вытекает, следовательно, из его содержания, из очередных, новых по отношению к картезианской физике требований развивающейся науки.

У Декарта озарение произошло во время войны, на зимних квартирах армии герцога Максимиллиана Баварского, у Ньютона — в Вулсторпе. В 1665—1667 гг. Англия была жертвой страшной эпидемии. Чума свирепствовала во всех городах, и Ньютон, только что ставший бакалавром Тринити-колледжа, отправляется в Вулсторп, где проводит с небольшим перерывом больше полутора лет. Вулсторпское озарение отличается от ульмского тем, что оно произошло во время напряженной экспериментальной работы, когда Ньютон шлифовал и полировал стекла и собирал приборы для новых экспериментов. Продолжались и химические исследования, которыми он увлекся в ранней юности.

Это начатое в Вулсторпе параллельное, отнюдь не одномерное исследование небесной механики, оптики и математики делает очень трудным исторический анализ творческого пути Ньютона. И вместе с тем интересным: хочется выяснить, в чем же единство параллельных потоков.

Однажды на склоне лет, беседуя за чаем в саду, Ньютон вспомнил, как в аналогичной обстановке, в вулсторпском саду, он был отвлечен от своих размышлений падением яблока. Это впечатление вызвало ряд новых мыслей. Почему яблоко падает отвесно, к центру Земли? Очевидно, Земля притягивает яблоко, и притяжение распространяется по всей Вселенной и удерживает небесные тела на их орбитах. Это тяготение пропорционально количеству вещества в тяготеющих друг к другу телах.

Рассказ Ньютона о случае с яблоком получил широкую известность не только потому, что людям свойственно стремление запротоколировать моменты появления больших идей, понять таинственный механизм рождения мысли. Эпизод с яблоком показателен для Ньютона и для всей классической науки XVII в. Ее интересует уже не только логическая связь мысли с ее дедуктивным продолжением, с другой мыслью. Для нее характерны связь дедукции с сенсуальным впечатлением, единство эмпирически-сенсуального и логического постижения мира, присущая гению способность ассоциировать чувственные образы с абстрактнейшими, охватывающими все мироздание принципами.

В 1665—1666 гг. Ньютон уже создал основы теории тяготения: он отождествил тяжесть с силой, удерживающей небесные тела на их орбитах, и вывел обратную зависимость этой силы от квадрата расстояния. Но нам это известно из позднейших писем и записей ученого. Ньютон опубликовал свою теорию тяготения значительно позже, в 80-х годах, в наиболее точной и строгой форме — в «Математических началах натуральной философии» (1686 г.). О причинах такого запоздания написано немало: может быть, Ньютону не хватало точных астрономических данных для математического доказательства закона тяготения. Для нашей книги и в особенности для данной главы, повествующей о жизни мыслителя, достаточно еще раз подчеркнуть его экспериментальный и математический ригоризм.

Теория тяготения имеет свою предысторию. Г. Галилей открыл инерцию, Р. Декарт — прямолинейное движение предоставленного самому себе тела, И. Кеплер — эллиптическую форму орбит, X. Гюйгенс — центробежную силу. К тому времени, когда Ньютон задумался над проблемой тяготения, Дж. Борелли уже пришел к выводу, что в мире существует взаимное стремление тел к соединению и, когда это стремление уравновесится стремлением от центра вращения, вращающееся вокруг этого центра тело будет сохранять свою скорость. Р. Гук в 1666 г. докладывал Королевскому обществу о своих опытах по определению зависимости тяжести от высоты, а впоследствии, в 1674 г., опубликовал статью, где движение планет выводится из трех постулатов: 1) все небесные тела притягивают друг друга; 2) тело, приведенное в прямолинейное движение, сохраняет его, пока не отклонится под действием другой силы и не станет двигаться по кругу, эллипсу и т. д.; 3) сила притяжения тем больше, чем ближе тело, на которое она действует. В 1680 г. Гук писал, что притяжение обратно пропорционально квадрату расстояния между центрами.

Идеи, к которым Ньютон пришел в 1665—1666 гг. в Вулсторпе, уже носились в воздухе: они были высказаны до того, как он сформулировал их в «Математических началах натуральной философии». Почему же все-таки доньютоновская эволюция этих идей только предыстория классической теории тяготения, закона всемирного тяготения?

Дело в том, что революция в науке, завершением которой были «Математические начала», изменила сами понятия истории и предыстории научной теории. Речь идет о классической теории тяготения. Термин «классическая» означает (сейчас, после неклассической революции!), что эта теория, не претендуя на вечный характер, претендует на роль неоспоримого объяснения для определенной области явлений в рамках законной в этой области аппроксимации. Такая роль принадлежит теории, в которой достигнуто новое соотношение эмпирии и логики — будущих эйнштейновских «внешнего оправдания» и «внутреннего совершенства». В классическую науку могли войти кинетические модели, если точные количественные выводы из них совпадали с соответствующими экспериментальными данными. Качественные модели и чисто логические дедукции должны были получить форму математических соотношений, а эмпирия должна была стать количественной проверкой этих соотношений.

Отличие Ньютона от его предшественников в теории тяготения заключается прежде всего в том, что он понимал недостаточность нестрогих, качественных моделей. Это отнюдь не различие в степени математического и экспериментального ригоризма — это различие в фундаментальных особенностях стиля и логики научного мышления. И еще одно различие — между гением и талантом. Вернувшись к этой уже затронутой проблеме, напомним, что гений не только дает новый ответ на какой-либо вопрос, но и меняет смысл вопроса, его логическую структуру.

Для достижения нового, классического соотношения эмпирии и дедукции, Сенсуса и Логоса, нужен был переход от интегрального представления о движении к представлению о непрерывном изменении сил, скоростей и положений, т. е. к анализу бесконечно малых величин. Если для нового, классического «внешнего оправдания» требовались количественные эксперименты, то для нового «внутреннего совершенства» необходимо было дифференциальное представление о движении от мгновения к мгновению и от точки к точке. В 1664—1665 гг. в Вулсторпе у Ньютона уже сформировались представления, которые были по существу началами дифференциального и интегрального исчисления. «Рассуждение о квадратуре кривых» в своей первоначальной форме было написано в 1665—1666 гг., а опубликовано только в 1704 г. О математических идеях Ньютона будет сказано позже в связи с написанной в 1670—1671 гг. и опубликованной в 1736 г., после его смерти, работой «Метод флюксий и бесконечных рядов» и некоторыми другими работами. Сейчас упомянем только о понятиях, введенных Ньютоном в названных произведениях. В них рассматриваются «первые отношения» зарождающихся величин и «последние отношения» исчезающих величин. Далее Ньютон говорит о нахождении флюксий по флюентам (например, мгновенной скорости по пройденному пути), т. е. дифференцировании, и о нахождении флюент по флюксиям (например, пути по скорости), т. е. интегрировании. Вопрос о приоритете в создании анализа бесконечно малых как будто решается вулсторпскими идеями и «Рассуждением о квадратуре кривых» в пользу Ньютона. Но, как мы увидим, этот вопрос, так долго и яростно обсуждавшийся с самого начала XVIII в., связан с гораздо более общим и сложным вопросом о дифференциальном мировоззрении, отличающем период классической науки от эпохи тысячелетнего господства интегральной картины мира. Следует все же, забегая вперед, сказать, что пребывание Ньютона в Вулсторпе в 1665—1667 гг. было не только периодом одновременного исследования проблем небесной механики и математики, но и начальным этапом его творческого пути как единого процесса: уже в эти годы работы, которые положили начало анализу бесконечно малых, были связаны с работами, посвященными небесной механике. Однако не в полной мере. Полного единства здесь не было и позже, даже в «Математических началах натуральной философии», где изложение законов механики не опиралось на дифференциальное исчисление. Вообще идеи, возникшие в середине 60-х годов, разрабатывались Ньютоном неравномерно: в различные периоды он уделял наибольшее внимание то оптике, то механике, не прекращая други