Акульи моря
«Флиш» — сон разума рождает чудовищ
Конечно, есть большой соблазн представить себе будущее Земли как-то очень эффектно и неожиданно. Вся хитрость заключается в том, что подтвердить или опровергнуть это никак нельзя — никто не доживёт до указанных авторами времён и не укажет им на их ошибки. Поэтому романтически настроенные создатели фильма «The future is wild» вводят в фильм такого невероятного «героя», как flish, летающая рыба. Но так ли реальна возможность появления этого существа? Думаю, это событие — из числа наименее вероятных.
Анатомия flish весьма странная. Я не отрицаю того, что рыба может какое-то время активно пролететь по воздуху, используя грудные плавники как крылья. Такие рыбы есть и сейчас — это клинобрюшки Gasteropelecidae (из отряда или подотряда Characiformes), обитающие и сейчас в бассейне Амазонки. У этих рыбок развита грудная кость, напоминающая характерный для птиц киль (sternum), к которой прикрепляются летательные мышцы. Эти рыбки летают по-настоящему, в отличие от более известных обывателю морских Exocoetidae, которые не летают, а лишь планируют над волнами подобно бумажному самолётику. Странно другое — находясь под явным впечатлением от «птицеподобности» flish, автор этого существа «свернул» хвост рыбы на 90°? (на манер птичьего хвоста). Но хвосты flish и птицы — не гомологичные структуры, они развиваются из разных зачатков! Хвост птицы состоит из перьев, имеющих дермальное происхождение. Он не связан с костями позвоночника птицы. Хвост flish является производным рыбьего хвоста, его формируют не только лучи плавников, имеющие дермальное (кожное) происхождение, но и верхние и нижние остистые отростки (processus spinosus) позвонков хвоста. Следовательно, допустить, что хвост flish горизонтальный — это означает допустить, что хвостовой отдел позвоночника flish повёрнут на 90°. Как представить себе переходную форму от обычной рыбы к flish и её образ жизни — ума не приложу… Хвост таких рыб, как камбала, конечно, расположен горизонтально, но и само тело таких рыб лежит на боку! Летающее же существо flish нормально ориентировано в пространстве, но его хвос свёрнут набок. Кроме того, совершенно неясно предназначение роскошного спинного плавника на спине flish. Зачем он нужен летающему существу? Были, конечно, птерозавры типа Pteranodon, Tapeyara, Thalassodromeus с огромными «гребнями» на голове, служившими для поддержания равновесия в полёте, но эти гребни были высокими и короткими. Плавник flish — низкий и длинный — он тянется по всей спине. Это явно не руль и не балансир. Что это? Атавизм? Или следствие желания автора монстра подчеркнуть «рыбью природу» flish?
Хвост — не единственное, что заставляет задуматься над природой flish. Биомеханика flish ставит ещё одну неразрешимую проблему: плавать такое животное не умеет. Авторы книги утверждают, что flish может опускаться на воду и плыть, подняв грудные плавники как паруса. Также они объясняют плавучесть flish тем, что на груди этого существа будет жировая подушка, а лёгкое и полая чешуя придадут ему дополнительную плавучесть. Брюшные плавники сработают как киль, не давая животному перевернуться. С точки зрения биомеханики такой монстр будет устойчив только в луже, если воткнёт в дно брюшные плавники. На воде он будет постоянно заваливаться набок. Flish — не утка. У утки тяжёлые внутренности и ноги (центр тяжести) расположены ниже «ватерлинии». А у flish нижняя часть тела наоборот, слишком лёгкая. Его брюшные плавники малы и легки, и выталкивающая сила, действующая на грудную жировую подушку flish, уравновесит их тяжесть. Лёгкое чудовища также расположено ниже позвоночника. Зато тело монстра имеет (совершенно неясно, зачем) высокий спинной плавник и, судя по форме тела, сильную спинную мускулатуру, которая тяжелее жировой подушки внизу. Низ flish слишком лёгок. Соответственно, центр тяжести у flish находится выше «ватерлинии» сидящего на воде животного, и под воздействием земного притяжения он постоянно будет стремиться занять наиболее устойчивое положение — внизу. При этом бедное животное, сидя на волнах, постоянно будет опрокидываться, чему в немалой степени будет способствовать ветер, дующий в задранные кверху плавники. А высокое и узкое тело монстра никак не воспрепятствует «бортовому крену».
Если анализировать образ жизни и его связь с энергетическими процессами в организме, то окажется, что летающие существа — это животные с высокой интенсивностью обменных процессов. Таковы птицы, рукокрылые, и, возможно, птерозавры (на некоторых образцах Sordes pilosus есть что-то, похожее на шерсть, что, возможно, свидетельствует о теплокровности). Насекомые — существа мелкие, их не будем брать в расчёт, поскольку их затраты энергии на полёт гораздо меньше, чем у крупных позвоночных. Flish в фильме — существо крупное и летающее, причём, судя по кадрам фильма, он летает активно, долго и быстро. Следовательно, его энергетика должна отвечать образу жизни. Тело flish покрыто чешуёй — следовательно, оно либо не вырабатывает тепла (нечего терять и сохранять) и имеет температуру окружающей среды, либо вырабатывает его столько, что flish может умереть от его избытка. Но последнее предположение неверно, поскольку в природе не бывает такой расточительности. Следовательно, flish — существо холоднокровное (эктотермное). Это означает, что его тело вырабатывает мало тепла. Следовательно, энергетические процессы в нём идут медленно. Следовательно, животное flish не должно активно летать! Сейчас на Земле есть эктотермные «летающие» существа — веслоногая лягушка Racophorus, ящерица Draco volans, даже некоторые древесные змеи. Но эти животные не летают активно — они лишь совершают планирующие прыжки. Энергии современных «летающих рыб» Carnegiella, Gasteropelecus, Thoracocharax хватает только на несколько метров и секунд полёта. Напомню, что океанские «летучие рыбы» — пассивные летуны, «планеристы». Их энергозатраты сводятся к тому, чтобы несколько секунд активно поработать хвостом перед «затяжным прыжком» над волнами.
Прочитав книгу (напомню, что это произошло после просмотра фильма), я всё же нашёл упоминание о системе термоизоляции flish («Дикий мир будущего», стр. 116):
«Подобно своим предкам, флиши холоднокровны и вынуждены сохранять тепло тела с помощью полых чешуек, покрывающих мускулы крыльев».
Такая постановка вопроса заставляет удивлённо поднять бровь и долго её не опускать. Дело в том, что холоднокровное (правильнее — «эктотермное») животное получает тепло от внешнего источника тепла: Солнца. Эктотермны земноводные, рептилии, рыбы, беспозвоночные — все их жизненные процессы зависят от температуры окружающей среды. И все эти существа имеют приспособления для поглощения тепла Солнца. Так, хамелеон темнеет, ящерицы и змеи выползают на нагретые камни, а ископаемый ящер Dimetrodon имел на спине гигантский «парус», образованный вытянутыми вверх позвоночными отростками и обтянутый кожей. Такие же «паруса» были у динозавров Spinosaurus, Altispinax, Ouranosaurus, и у земноводного Platyhystrix, не связанного с ними непосредственным родством. Рыбы могут регулировать температуру тела более примитивным способом: выбирая холодные или тёплые слои воды. Некоторые эктотермные животные могут при активной мышечной работе разогреваться, но всего лишь на несколько градусов относительно окружающей температуры. Активно греются, работая крыльями, пчёлы и шмели, а среди позвоночных греют себя сами тунцы. Но их нагрев всё же несущественнен и их нельзя считать истинно теплокровными.
Если представить себе flish, летающую в воздухе при температуре +25 °C, то можно предположить, что её температура поднимется максимум до +29…+30 °C. Однако у птиц температура тела намного выше — до +39 °C, а для разных видов летучих мышей указываются значения температуры от +34 °C до +40,5 °C. Кажется, что разница не очень существенна. Отнюдь нет! Дело в том, что в химии существует правило Вант-Гоффа — Аррениуса, которое гласит, что подъём температуры на 10 °C приводит к 2—3-кратному ускорению химических процессов. Этому же правилу до некоторой степени подчиняются и биохимические процессы. Температурный предел здесь — температура, при которой белки сохраняют свои свойства. Дело в том, что при высоких температурах сложные структуры белков и активные центры их молекул начинают разрушаться, и они уже не могут выполнять свою роль в биохимических процессах.
А разница температуры flish и птицы — это как раз и есть те самые искомые 10 °C! Думаю, вывод о разнице в физиологии flish и птиц любой сможет сделать сам.
Получая тепло от внешних источников, живые существа не имеют термоизолирующих покровов. А вот теплокровные звери, птицы и, возможно, птерозавры, имеют (или имели) природную «одежду» — шерсть и перья (для птерозавров, как я уже сказал, есть указания на находки отпечатков волосовидных образований у мелких видов, однако природа этих образований — предмет дискуссий). Это связано с необходимостью защиты от переохлаждения, ведь их организм нормально работает только при высокой температуре. А вот лягушка, покрытая шерстью или перьями, столкнётся с колоссальными трудностями — она не сможет быстро нагреваться на солнце. Ведь шерсть или перья сами по себе не греют — они лишь помогают сохранять выработанное телом тепло. Поэтому и мороженое, завёрнутое в шубу, дольше остаётся холодным даже на солнце. Flish с полыми чешуйками, призванными обеспечить термоизоляцию — это та же самая лягушка в перьях или мороженое в шубе. Этому животному не удастся выработать нужное количество тепла, чтобы активно двигаться (это же «холоднокровное», сиречь эктотермное животное), а термоизолирующая чешуя будет мешать солнечному теплу доходить до организма flish. Вот такой парадокс.
Ещё одна физиологическая проблема, с которой столкнётся flish во время полёта — дыхание. Судя по внешности flish, органами дыхания этого существа отчасти являются жабры. В какой-то мере это выгодно — воздух, носитель кислорода проходит через жабры непрерывным потоком, в то время, как в лёгких он меняет направление во время вдоха и выдоха. Но это несёт одну проблему: воздух — это не вода, при прохождении потока воздуха через жабры эпителий жаберных лепестков просто высохнет и перестанет участвовать в газообмене. Flish просто задохнётся в полёте. Конечно, не исключено, что flish имеет особый видоизменённый плавательный пузырь, чтобы дышать. Косвенно на это указывает такая особенность flish, как голос (по крайней мере, картины жизни этих существ сопровождаются хриплыми криками, похожими на голоса простуженных чаек). Ведь жабры не могут давать воздушную струю, используемую для издавания звуков. Однако активный образ жизни требует такого количества кислорода, которое не может дать «лёгкое» рыбы во-первых, из-за несовершенства самого органа дыхания, а во-вторых, из-за несовершенства механизма вдоха-выдоха. У нас, наземных четвероногих, дыхание осуществляется благодаря движениям грудной клетки. У рыб грудной клетки нет, есть лишь не соединённые друг с другом рёбра. Следовательно, «лёгкое» рыбы не справится с подачей нужного количества кислорода. Сохнущие жабры и слабое «лёгкое» — не лучшие помощники активного летающего существа…
Сами авторы поставили себя в крайне неловкое положение, весьма неосторожно раскрыв хитрости родословной flish: предком этого существа, согласно книге (в фильме о предках этого животного деликатно умолчали), оказывается… треска (точнее — «рыба семейства тресковых» (стр. 126)! И это полностью лишает летающее создание права на существование сразу по двум причинам: во-первых, треска — донная рыба. Усик на подбородке рыбы необходим для поиска добычи на илистом дне. Соответственно, специализация трески вероятнее всего может в будущем идти по пути более глубокого приспособления к донному образу жизни. Трудно представить себе, какие причины подвигнут треску к смене места обитания. Её плавники короткие, а тело очень вытянутое — это выдаёт в ней не очень хорошего пловца, которому трудно прожить в верхних слоях воды, постоянно и быстро двигаясь. Поэтому приспосабливаться к пелагическому образу жизни она, скорее всего, не станет. А второе возражение вытекает непосредственно из первого: у трески замкнутый плавательный пузырь, который не сообщается с кишечником! Поэтому он не может использоваться как лёгкое. А чего ещё можно ожидать от донного животного? Треске нет смысла использовать плавательный пузырь как орган воздушного дыхания: в море (точнее — в открытом океане) нет участков воды, бедных кислородом, а подниматься из глубин за глотком воздуха — это означает испытывать перепады давления воды и показывать себя многочисленным хищникам верхних слоёв воды. Поэтому сама предпосылка для развития воздушного дыхания у трески и любого из её родичей просто отсутствует. А если нет предпосылок, эволюция в таком направлении просто не пойдёт: она направляется внешними факторами, но проходит за счёт внутренних генетических резервов популяции. Вообще, отряд Трескообразные (Gadiformes) представлен значительным количеством глубоководных и придонных видов. Поэтому на роль предка летающей рыбины представители этого отряда совершенно «не тянут». И думаю, что любой поймёт и сделает выводы, если я скажу, что замкнутый плавательный пузырь у рыбы — это специализированное состояние, а открытый — примитивное.
И ещё одна проблема подстерегает flish: проблема размножения. Это существо — всё-таки рыба. И у него есть два основных способа размножения: отложить икру, либо родить живых молодых flish. Размножение с икрометанием проще: можно сразу получить большое количество потомков и не нужно никаких физиологических перестроек. Но это означает, что flish время от времени должна покидать воздух и нырять под воду. А если есть мальки flish (и если они были до того, ведь дожили же flish до 200 миллионов лет в будущем!) — значит, о наличии в море разных видов silver swimmer — рыбообразных потомков планктонных рачков — можно смело забыть. Ведь мальки flish — это всё-таки рыбы, и это означает, что рыбья экологическая ниша занята, и silver swimmer её занять не сможет. Но, поскольку в море всё же есть silver swimmer, следует признать, что молодь flish развивается не в море. Судя по всему, самка flish должна рождать некоторое количество достаточно развитой молоди. Рыбы могут рождать живых мальков, такое явление встречается как у акул, так и у костных рыб. Но у flish есть одна проблема: это существо летает, следовательно, flish не может родить много молоди сразу. Не исключено, что мальков будет всего два (по количеству яйцеводов) либо вообще один (если один яйцевод исчезнет, как исчез у птиц). Но малёк flish должен родиться достаточно развитым, чтобы сразу летать, либо flish должна заботиться о своём потомстве. Но у рыб, рождающих живых мальков (не будем забывать, что flish, хоть и летает, всё же остаётся рыбой), забота о потомстве сводится лишь к самому рождению живого малька. Далее он должен заботиться о себе сам. Кроме того, очень развитый малёк — лишняя тяжесть для беременной flish. С учётом несовершенства дыхательной системы и потерь энергии во время полёта можно сказать, что вынашивание и рождение крупного развитого живого малька — непосильная нагрузка на организм flish.
Вот такое это противоречивое и невозможное существо — flish!
Возвращение морского «Терминатора»
По законам жанра в каждом фильме должен быть герой, и должен быть злодей. В фильме «The future is wild» роль злодея сыграло существо sharkopath — стайная светящаяся акула. Но появление этого существа ставит больше вопросов, нежели даёт каких-то ответов. Я не отрицаю того, что акулы — это существа с большим «запасом прочности»: различные отряды этих хрящевых рыб сменяли друг друга, существуя в общей сложности с позднего силура до наших дней. Вообще, современные акулы — не столь уж «древние существа», какими их часто представляют, хотя их родословная несомненно древнее звериной или птичьей: почти все современные семейства акул появились на рубеже мела и кайнозоя, лишь рогатые акулы существуют с юрского периода (но ни одного силурийского, девонского или даже раннекайнозойского вида акул до наших дней не сохранилось — их исправно сменили более совершенные виды). Но вопрос, поставленный передо мной фильмом «Дикое будущее», гораздо существеннее: как они могли выжить вообще? Ни фильм, ни книга не дают адекватного ответа на этот вопрос.
Известно, что любой вид живых существ стремится максимально захватить все доступные для жизни области. Поскольку в верхних слоях воды рыб (согласно фильму и книге) заменили потомки ракообразных, silver swimmer, можно предположить, что рыб в морях не осталось вообще. Пройти развитие от личинки или мелкого планктонного рачка до вида silver swimmer — на это нужно время, гораздо больше времени, чем на превращение одного вида рыб в другой, занимающий новые места обитания. Поэтому, если хоть какой-то вид рыб выжил, не видать ракообразным рыбьих экологических ниш. Следовательно, если море будущего принадлежит ракообразным, рыбы вымерли полностью. Но если предположить, что акулы (тоже, кстати, рыбы) заняли какую-то экологическую нишу в море будущего, следует сделать вывод, что они заняли бы освободившиеся после вымирания костных рыб экологические ниши раньше, чем предки silver swimmer. Не стоит забывать, что у акул есть дети — маленькие акулы. И они занимают свою экологическую нишу, порой отличающуюся от ниши взрослой акулы. Такой случай уже имел место в прошлом, в мезозойскую эру: мелкие травоядные динозавры сравнительно редки, поскольку их экологическую нишу занимали детёныши и подростки крупных видов динозавров. Следовательно, молодняк акул занимает в море будущего то место, которое ранее занимали рыбы вроде ставриды (Trachurus) и скумбрии (Scomber). Разумеется, silver swimmer не сможет занять эту нишу при наличии таких конкурентов — у него не хватит времени на адаптацию. Мы получаем противоречие: акулы в море есть (есть и их небольшие дети), и в то же время в море есть разные виды silver swimmer, занявшие экологические ниши рыб — эти факты взаимно исключают друг друга.
Можно, конечно, «запереть» акул в глубоководные экосистемы и сказать, что там они могут выжить. Но так ли это? Нет! Во-первых, некоторые глубоководные акулы при отсутствии рыб в верхних слоях воды обязательно превратятся в более мелководных рыб, если это выгодно для выживания (хотя бы из-за обилия пищи и полного отсутствия конкурентов). А кто их удержит? Я бы не смог. А во-вторых, глубоководные экосистемы — это не столь уж благоприятное место для выживания: они ещё более зависимы от продуктивности верхних слоёв океана. Это не убежище, а скорее жизнь подачками, поскольку органику в глубинные слои воды приносят многочисленные погибшие организмы («дождь трупов»). Если в океане случится «планктонный Судный День» (как предположил профессор Stephen Palumbi), то «дождь трупов» будет вначале очень обильным, поскольку начнётся массовое вымирание большинства видов верхних слоёв океана. Но потом он прекратится практически полностью, ведь «наверху» никто не будет размножаться по причине своего полного вымирания. Поэтому массовое вымирание не замедлит сказаться на обитателях глубинных слоёв океана. А любая акула, крупный вид, стоящий на вершине пищевой пирамиды, вымрет с ещё большей вероятностью, нежели какой-нибудь рачок или червь. В настоящее время на дне океана вблизи подводных вулканов открыты особые экосистемы, не зависящие от солнечного света. Но они весьма локальны, разбросаны по дну океана на большие расстояния и их продуктивность не сможет обеспечит выживание популяции крупных хищников на протяжении сотни миллионов лет. Следовательно, акула sharkopath — столь же нереальное существо, как и летающий монстр flish.