Один день из жизни мозга. Нейробиология сознания от рассвета до заката — страница 6 из 34

[22] а повреждение таламуса приводит к его потере.[23] Наконец, анестезия может отключать сознание по причине того, что клетки таламуса перестают контролироваться сигналами обратной связи из коры, и цикл прерывается.[24] Но, несмотря на это, все же остается неясным, почему эта схема является такой значимой для сознания. Что так сильно отличает таламокортикальную петлю от прочих связей в мозге?

Во время сна кора головного мозга претерпевает периоды кратковременных всплесков возбуждения; они чередуются с периодами сниженной активности. Именно эта флуктуация в таламокортикальных сетях связана с переходом от сознательного состояния к бессознательному. Когда клетки таламуса снижают активность, клетки-мишени в коре возвращаются к режиму работы «по умолчанию»: в эти периоды мы можем наблюдать характерные медленные мозговые ритмы, лежащие в основе бессознательного состояния.[25]

Вместо того чтобы «просто» выявлять, какие области мозга оказываются активными в определенных условиях, со временем стратегия исследований сместилась в сторону открытия сложных механизмов: где, когда и каким образом участки мозга взаимодействуют между собой путем перекрестного перекликания широкомасштабных реверберирующих колебаний. Некоторые из этих колебаний связаны с релаксацией и сном и определяются характером взаимодействий между таламусом и корой. Между тем другие частоты, по-видимому, генерируются в определенных областях таламуса или коры и связаны с высшими когнитивными функциями, включая восприятие.[26] Если группы нейронов временно синхронизируют свою активность, этот процесс может иметь заманчивые функциональные перспективы: конкретная частота колебаний – 40 Гц – может являться особенно важным элементом некоей ключевой корреляции.[27]

Однако более поздние исследования показали, что такая синхронизация между нейронами может быть стандартным режимом для мозга, а вовсе не исключением,[28] и нет причины рассматривать какую-либо конкретную частоту как особенное, ключевое условие для возникновения сознания. Кроме того, бессознательное состояние может сопровождаться усилением синхронизации в лобных долях мозга.[29] Наконец, существует ряд сознательных переживаний, которые не связаны с синхронизированной деятельностью мозга, в то время как сильная и резкая синхронизация, как, например, во время острых припадков, на самом деле связана с потерей сознания.[30]

Главная идея, которую развивают все эти исследования, состоит в том, что анатомическая связь между таламусом и корой обеспечивает в лучшем случае необходимую, но не достаточную основу для сознания, а в худшем случае порождает больше вопросов, чем ответов.

Альтернативной тактикой может быть сосредоточение не столько на пространственной специфике работы мозга, сколько на временных рамках протекающих в нем процессов:[31] кажется очень правдоподобным, что сознание имеет место лишь тогда, когда нейронная активность поддерживается на протяжении длительного отрезка времени – порядка нескольких сотен миллисекунд. Критический интервал, разграничивающий «видимые» и «невидимые» события, по-видимому, составляет от 270 до 500 миллисекунд:[32] известный нейробиолог Бенджамин Либет предположил, что этот период необходим для того, чтобы сформировалось осознание события, в то время как самые ранние ответы, возможно, возникли в мозге уже на 25-й миллисекунде.[33]

Существует также альтернативная интерпретация этих данных, заключающаяся в том, что решающим фактором может быть не само время, а конечное состояние, для достижения которого оно потребовалось. Не исключено, что это создание подходящего «окна», дающего возможность для «повторного входа» сигнала, своего рода продолжение реверберации «входа» и «выхода» между конкретными участками мозга.[34] Важным нюансом этой теории является то, что ни в коем случае не следует путать «повторный вход» с простой обратной связью, в результате чего некоторое существующее состояние может быть модифицировано в результате первоначального воздействия.

Обезьяны, по-видимому, реагируют на экспериментальные изображения, только когда их мозговые волны формируют характерный паттерн, который отражает тип нейрональной самонастройки,[35] что также происходит и у людей. Это предположение кажется правдоподобным. Впрочем, оно мало говорит нам о том, почему «повторный вход», накопление итераций между двумя областями мозга, имеет такое большое значение.

Давайте снова изменим тактику. В поисках убедительной связи между сознанием и определенными свойствами мозга мы также можем двигаться в противоположном направлении, фокусируясь не на связях между областями мозга, а на его самых маленьких функциональных элементах – отдельных клетках. В рамках такого подхода мы можем отслеживать функционирование отдельных нейронов у людей, перенесших операцию на головном мозге. Благодаря отсутствию в мозге болевых рецепторов, с середины двадцатого века стало возможным пребывание пациента в сознании во время операций на головном мозге.[36] Канадский хирург Уайлдер Пенфилд, который в свое время прооперировал более пятисот пациентов, смог, в частности, стимулировать открытую поверхность височной доли пациента с тяжелой формой эпилепсии. После подобных беспрецедентных процедур пациенты нередко сообщали о ярких, но похожих на сновидения «воспоминаниях». Такие «воспоминания» могут возникать при стимуляции соседних участков нервной ткани, и даже стимуляция в разное время на одном и том же участке может привести к различным субъективным переживаниям. Эти откровения предполагают, что Пенфилд воздействовал на различные, хотя и перекрывающиеся сети нейронов, в которых один участок нервной ткани мог быть компонентом более чем одной сети, и, наоборот, разные участки могут входить в состав одной и той же сети.

Однако лишь недавно была разработана более совершенная техника регистрации активности клеток головного мозга у пациентов, находящихся в сознании, и новые данные оказались совершенно удивительными. В одном эксперименте, который сначала может показаться немного странным, клетка мозга пациента была возбуждена целыми семью различными изображениями Дженнифер Энистон, но эта же клетка никак не реагировала на восемьдесят других изображений, в том числе фотографии современных кинозвезд, таких как Джулия Робертс, или даже совместные фото Дженнифер Энистон с Брэдом Питтом. Были выявлены определенные клетки мозга, которые реагировали, повышая свою активность, только когда субъекту предъявляли фотографии той или иной знаменитости. В другом эксперименте исследователи обнаружили, что около трети наблюдаемых клеток (44 из 137) оказались также очень избирательными: в данном случае использовались фотографии Холли Берри, впоследствии отреагировавшие клетки получили название «нейроны Холли Берри».[37]

Больше всего ученых поразила согласованность откликов, даже когда субъекту были показаны весьма разнообразные фотографии одного и того же человека или объекта, – явление, известное как «инвариантность». Исследования подобного рода позволяют предположить существование когнитивной обработки на уровне отдельных нейронов. Но может ли одна клетка мозга действительно независимо осуществлять специфическую функцию? Давайте еще немного приоткроем завесу тайны…

В середине двадцатого века было популярно представление о том, что в мозге существует своего рода иерархия функций, которую можно представить как пирамиду, на вершине которой находится некий «босс». Эта концепция хорошо согласовалась с научными изысканиями 1960-х годов, когда два физиолога – Дэвид Хьюбел и Торстен Визель – совершили прорыв, который спустя 20 лет принес им Нобелевскую премию.[38] Хьюбел и Визель, используя технику регистрации отдельных нейронов, исследовали поведение нейронов зрительный зоны коры головного мозга. Эксперимент позволил выявить связь отдельных нейронов с определенным участком зрительного поля. Это означает, что отдельные нейроны зрительной коры отвечают за стимулы, отражаемые определенной рецепторной зоной сетчатки глаза. Удивительное открытие заключалось в том, что когда они глубже проникали в мозг – дальше по пути обработки сигнала, клетки в буквальном смысле становились более избирательными. Казалось, существует иерархия избирательности в обработке зрительной информации: поскольку входной сигнал от сетчатки обрабатывался на последующих этапах в более глубоких участках мозга, рассматриваемые клетки становились более специализированными. Было, конечно же, удивительным открытием, что одна клетка мозга может иметь такую беспрецедентную индивидуальность: это породило некоторые странные экстраполяции, которые вышли за рамки органичной концепции иерархии физических свойств мозга, порождая искусственные иерархии сознания.

На вершине концептуальной иерархии должна находиться наиболее привередливая клетка мозга, в конечном итоге реагирующая только на конкретные образы, такие как лицо, или даже только на конкретное лицо. В то время ученые ссылались на гипотетический «нейрон бабушки», который, как следует из названия, будет реагировать только на внешность вашей бабушки как на конечную ступень в иерархии.