А в перспективе — создание Кулойской ПЭС в устье реки Кулой, впадающей в Мезенский залив. Но самой мощной будет Беломорская приливная электростанция. Плановая мощность станции 14 млн. кВт, а годовая выработка электроэнергии — в 36 млрд. кВт • ч. В здании ПЭС будет расположено 2000 турбин. Беломорская ПЭС, включенная сначала в единую энергетическую систему европейской части СССР, а затем и в единую энергетическую систему всего Советского Союза, смогла бы, прежде всего, полностью удовлетворить электроэнергией потребности населения и промышленных предприятий европейской части СССР в часы ее наибольшего потребления, т. е. в часы «пик», затем она могла бы постоянно компенсировать недостаток электроэнергии, недовырабатываемый многими ГЭС в засушливые годы; наконец, она дала бы возможность регулировать работу ТЭС, не приспособленных к переменному режиму, а попутно разрешить еще целый ряд проблем, связанных с электрификацией транспорта, удовлетворением электроэнергией ряда энергоемких производств и т. п.
Отдельные участки дальневосточного побережья СССР также перспективны в отношении освоения энергии приливов. Так, в Тугурском и Пенжинском заливах Охотского моря высота приливов достигает 9—13 м, а общие потенциальные ресурсы приливной энергии, по оценкам, составляют здесь свыше 400 млрд. кВт • ч. В настоящее время ведутся изыскательские работы, связанные с обоснованием сооружения здесь ПЭС Так, в Тугурском заливе возможно сооружение ПЭС мощностью 9 млн. кВт и выработкой 25 млрд. кВт • ч электроэнергии. В Пенжинском заливе теоретически возможно сооружение трех ПЭС, которые могли бы дать около 400 млрд. кВт • ч. Однако из-за отсутствия в этом районе потребителей такого количества энергии практически реальной считается электростанция мощностью 1,5 млн. кВт, с выработкой 4,5 млрд. кВт-ч.
Одним из потребителей для дальневосточных ПЭС может быть производство водорода путем электролиза воды. Оно допускает прерывистый режим, соответствующий режиму работы ПЭС. Учитывая, что водородная энергетика — это энергетика будущего, следует считать перспективным использование энергии ПЭС для этой цели.
Сооружение приливных электростанций на Дальнем Востоке может сыграть положительную роль в формировании горно-добывающих комплексов. Кроме того, энергия может быть передана в западные районы Дальнего Востока и Восточной Сибири и в зону Байкало-Амурской магистрали.
Освоение энергии приливов здесь может быть осуществлено в комплексе с извлечением различных элементов из морской воды. В данном случае можно применить способ фильтрования морской воды через избирательно действующие иониты, используя естественное перемещение огромных масс морской воды через водопропускные отверстия плотины. Экспериментальные работы в этом направлении проводятся на Кислогубской ПЭС, и при получении положительных результатов соответствующая установка будет запроектирована при сооружении Тугурской ПЭС.
Вообще же приливная электроэнергия не должна рассматриваться изолированно. Только в комплексе совместно с электроэнергией, вырабатываемой ГЭС, ТЭС и АЭС (атомными электростанциями), можно получить наибольший эффект от использования приливной энергии. Все эти виды электроэнергии дополняют друг друга в единой энергетической системе, где наиболее эффективно используются сильные стороны каждого вида электроэнергии.
Существуют и проекты использования энергии волн. Так, например, предложено использовать энергию волн с помощью оригинального штопорообразного поплавка в виде трубы. Части такой закрытой трубы, попавшие в волну, всплывают, а попавшие между гребнями волны опускаются. Так как эти усилия распределены неравномерно, то возникают вращательные движения. По мнению специалистов, строительство такой волновой станции будет сравнительно дешевым. Такие волновые станции будут использовать энергетические запасы поверхности океана и, как утверждают специалисты, будут весьма экономичны.
В Великобритании разработана обширная программа исследований в области использования энергии морских волн. Наиболее совершенный преобразователь энергии волн изобретен доктором Стефеном Солтером из Эдинбургского университета. Он представляет собой аппарат, снабженный лопастями длиной по 18,3 м, расходящимися под углом от общей оси и качающимися вместе с волнами. С помощью специального механизма лопасти приводят в движение насос, прогоняющий воду через турбину. От 20 до 40 таких аппаратов будет устанавливаться рядом друг с другом в виде цепей длиной 900 м и более.
Аппарат Солтера — единственный аппарат, который использует энергию как горизонтального, так и вертикального движения волн. Благодаря этому его коэффициент полезного действия приближается к 85 % по сравнению с 50 % в других системах.
По проведенным подсчетам, метровый отрезок волны «несет» от 40 до 100 кВт энергии, пригодной к практическому использованию. Основываясь на этих данных, один такой генератор может вырабатывать 50 МВт электроэнергии. Дюжина установок, каждая длиной 90 км, может полностью удовлетворить энергетические потребности Великобритании.
Энергия волн в небольших масштабах практически уже используется в Японии, где более 300 буев и маяков питаются электроэнергией, вырабатываемой генераторами, приводимыми в движение морскими волнами. Успешно действует и плавучий маяк Мадрасского порта в Индии, на котором установлен электрогенератор, приводимый в действие энергией морских волн.
Интенсивные поиски решения эффективного использования энергии морских волн проводятся в США, ФРГ, Швеции и некоторых других странах.
Кроме энергии волн, ученые пытаются использовать и энергию морских течений. Так, например, американское национальное управление океанских и атмосферных исследований разрабатывает проект установки турбин у берегов полуострова Флорида для использования энергии Гольфстрима. Скорость течения этой могучей «реки в океане» достигает местами 9 км/ч. По мнению специалистов, Гольфстрим обладает колоссальными энергетическими ресурсами. Проект предусматривает установку 200 турбин на расстоянии 20 км и на глубине от 30 до 120 м. Эти турбины смогут использовать лишь 4 % общей мощности течения. Извлечение большого количества энергии могло бы привести к изменению характера Гольфстрима, что в свою очередь могло бы повлечь за собой изменение климата очень больших районов земного шара.
По расчетам французских инженеров, установка большого вращающегося диска на глубине 100 м при высоте лопастей 25 м и скорости течения около 10 узлов ( Узел — мера скорости движения судов, соответствующая скорости одна морская миля (1852 м) в час.) обеспечит мощность электроустановки 110 тыс. кВт, а стоимость полученной энергии будет во много раз меньше, чем на тепловой и даже на атомной электростанции.
С конца 20-х гг. текущего столетия человечество начало использовать и гидротермальную энергию, т. е. энергию, источником которой является разница температуры верхних и нижних горизонтов морской воды. Собственно идея использования солнечной энергии, накопленной в океане в виде тепла, была впервые высказана еще в 1881 г. французским физиком Арсеном д'Арсовалем. Его ученик Жорж Клод в конце 20-х гг. XX в. построил на Кубе небольшую систему преобразования термальной энергии океана.
На Кубе в бухте Матанца очень благоприятные условия для работы такой установки — большие глубины с высоким перепадом температуры воды подходят к самому берегу. Насосы накачивают воду с поверхности моря, где она имеет температуру около +27 °C, в испаритель. В испарителе с частичным вакуумированием образовывалось пониженное давление, в результате чего вода превращается в пар при температуре всего около 30 °С. Полученный пар вращает лопасти турбин, которые соединены с генераторами. Отработанный пар попадает в конденсатор, для охлаждения которого подается вода с глубины с температурой 14 °С.
Аналогичные благоприятные условия имеются и около города Абиджана (Берег Слоновой Кости). Теплая вода здесь поступает в турбины Абиджанской ГТС из лагуны, хорошо прогреваемой солнцем, а холодная вода накачивается из моря с глубины 500 м. Мощность этой станции 14 тыс. кВт. При этом, поскольку в качестве рабочей жидкости использовалась вода, сбрасываемая обратно в океан, энергия производилась в так называемом открытом цикле.
Более эффективным оказывается замкнутый цикл, когда в качестве рабочей жидкости применяется аммиак или пропан. Такие жидкости находятся в герметически закрытых контурах, связанных с турбиной, вращаемой при расширении пара в испарителе.
В настоящее время в США, Японии, Франции и некоторых других странах Европы ведутся активные работы по программе ОТЕК (преобразование термальной энергии океана). Первая опытная гидротермальная станция системы ОТЕК — «мини-ОТЕК» работает вблизи Гавайских островов в Тихом океане. Ее единственное «топливо» — разница температур теплой воды на поверхности и холодных слоев на глубине. Мощность станции — 50 кВт; в качестве рабочей жидкости используется аммиак.
В настоящее время готова к спуску в море электростанция ОТЕК-1, которая будет производить 1 МВт электроэнергии. Она погрузится в воду тоже вблизи Гавайских островов и присоединится к «мини-ОТЕК». Она будет функционировать в течение трех лет, после чего на основе полученных результатов будут внесены соответствующие коррективы и в 1985 г. будет спущена на воду электростанция ОТЕК-2, которая будет вырабатывать 40 МВт электроэнергии. Американская программа ОТЕК развивается наиболее успешно.
Кроме стационарных гидротермальных станций системы ОТЕК по такому же принципу работы американской фирмой «Локхид» разработана плавучая конструкция, которую предполагается использовать в качестве дрейфующей электростанции в открытом океане в местах с наибольшими перепадами температур.
С 1974 г. работы по исследованию термальной энергии океана начались и в Японии. Была создана Ассоциация, включающая в себя множество фирм, компаний и университетов, которые приступили к разработке системы ОТЕК с общей мощностью около 100 МВт. В 1980 г. предполагалось испытать маленькую установку. Затем до 1984 г. намечено построить электростанцию на 25 МВт в качестве последнего этапа перед сооружением в 1990 г. установки на 100 МВт. Она будет расположена близ одного из островов на юге Японии.