о ли зубы с когтями на полметра вымахают, а голова, наоборот, скукожится, то ли вообще паутина из разных неприличных мест сочиться начнет, побуждая сигать по небоскребам аки мартышку наскипидаренную… Что же, давайте разбираться.
Черепашки-мутанты-ниндзя и их крыс-учитель — персонажи известного мультсериала — являются проявлением того самого страха перед «мутациями». Собственно, это воплощенный штамп, который может служить иллюстрацией к учебнику: тяпнул сто грамм какой-нибудь гадости — и вот ты уже не человек (черепашка, огурец), а нечто двуногоходящее, слизисто-бородавчатое и донельзя неприятное на вид. Возможно ли такое?
Внешний вид (фенотип) существа определяется в конечном итоге его генотипом, т.е. совокупностью полученных от родителей генов. Окружающая среда может оказать влияние на внешность только в относительно короткий период начального формирования/развития организма. При этом влияние может оказаться лишь отрицательным, в результате чего вместо нормального существа получится нелепый уродец. Любые нарушения естественного развития приводят к нарушениям внутренней гармонии организма, болезням и ранней смерти (зачастую еще до рождения). Примером тому могут служить юные профессиональные спортсмены, которые, накачиваясь стимуляторами в надежде достичь лучших результатов, еще до совершеннолетия приобретают целый букет болезней — от сердечной недостаточности до пожизненной импотенции.
Причина — в устройстве генома. Каждая клетка живет по строго заданной программе, регулируемой однозначным кодированием ДНК. Современной генетике мало что известно об этом кодировании, и вопросов в этой области не в пример больше, чем ответов. Однако ясно одно: грубое вмешательство приводит к тому, что программа начинает идти вразнос. В живом организме постоянно гибнут клетки из-за нарушения функционирования их генетического аппарата. Существуют естественные механизмы, позволяющие исправлять повреждения ДНК. Например, к таким механизмам относится зеркально-двойная природа самой цепочки, которая позволяет специальным пептидным комплексам восстанавливать одну из цепочек, если вторая осталась неповрежденной. Кроме того, имеет место избыточность кодирования в ДНК, благодаря чему даже невосстановимые повреждения отдельных ее участков не приводят к фатальным последствиям. Но эти механизмы достаточно хрупки и не в состоянии исправить логические ошибки. А ведь любое изменение генотипа, не согласующееся с общей его картиной, и есть такая ошибка. Поэтому любая случайная модификация генома почти гарантированно приведет к гибели живой клетки.
Собственно, мутация и есть повреждение генома на этапе развития. Мутации происходят постоянно под действием самых разнообразных факторов (например естественного радиационного фона Земли), но удачными оказываются лишь считанные единицы. Неудачливые клетки гибнут. Но даже если зародышевой клетке повезло — она выжила и сумела размножиться согласно новой программе, еще не факт, что включающий ее организм в целом выживет, оказавшись стабильным или просто удачливым в борьбе за существование. Таким образом естественный отбор проходит на двух этапах, и только удача на обеих стадиях приводит к закреплению мутации и передаче ее потомству.
Для того, чтобы серьезно изменить внешний вид и функциональность организма, и в особенности организма сформировавшегося, необходимо изменить миллионы клеточных программ. Причем изменения должны быть такими, чтобы сыгранный клеточный ансамбль не зазвучал диссонансом. Чтобы случайно избежавшие изменения клетки, следуя изначальной программе, не начали делиться таким образом, чтобы компенсировать недостаток нормальных соседок. Причем серьезные проблемы модифицированному организму может доставить даже одна единственная клетка. В качестве примера можно привести рак — очень часто его причиной является сбой генетической программы, в результате чего клетка начинает бесконтрольно делиться. В результате ее нормальные соседки просто погибают, задавленные массой злокачественной опухоли. Если же такие клетки, обретающие повышенную подвижность (метастазы), кровотоком переносятся в другие органы тела, это приводит к долгой и мучительной смерти.
Современная генетика не знает способов массированной генетической модификации клеток взрослого организма. Для модификации единичных геномов зародышевых клеток применяются специальные транспортные вирусы, встраивающие нужные последовательности нуклеотидов в нужные места цепочки ДНК. Однако этот способ не годится для изменения организма сформировавшегося — часть клеток останется неизмененной просто по теории вероятности, часть сумеет победить чужака, и, возможно, иммунная система организма просто уничтожит все или большую часть впрыснутых вирусов. Возможно когда-то в будущем наука сумеет создать наноботы, способные проделывать массовые операции с геномами клеток с гарантированным успехом, но до того изменить сформировавшийся организм на генетическом уровне не выйдет. И уж однозначно можно утверждать, что ни один химический состав, независимо от его сложности, равно как и поток сырой энергии, никогда не окажутся способными на такое.
Но помимо сложности с генетическим программированием есть еще и такой фактор, как иммунитет. Иммунная система организма всегда настороже и ищет подлежащих уничтожению чужаков. Иногда ее удается обмануть, но чаще всего — нет. И если даже мутация клеток в организме окажется удачной и позволит ему функционировать и дальше, немедленно последует аутоиммунный ответ. Все силы организма окажутся брошены на уничтожение воспринимающихся как «чужаков» мутантов. В результате либо модифицированная ткань будет съедена лейкоцитами, либо иммунная система истощит себя в бесплодной борьбе, в результате чего организм окажется беззащитным перед внешними инфекциями и быстро погибнет. В качестве иллюстрации можно привести пример с пересадкой тканей. Несмотря на тщательный подбор доноров (желательно близких родственников) реципиентам зачастую до конца жизни приходится сидеть на подавляющих собственную иммунную систему препаратах, не выходя из стерильных боксов и рискуя умереть от случайного насморка. Другой пример — системная красная волчанка, связанная с разладкой иммунной системы организма и приводящая к серьезному поражению внутренних органов (сердца, легких и т.д.).
Таким образом, генетическая модификация взрослого организма практически невозможна. Единственный реальный выход — это модифицировать оплодотворенную яйцеклетку или зиготу на ранних этапах развития, но и здесь успех никто не гарантирует.
Перейдем к генетически модифицированным растениям. Современные протесты против них, если отбросить чисто маркетинговые ходы со стороны «традиционных» производителей, сводятся к следующим пунктам.
Первый — это опасность контакта человеческого организма с модифицированными геномами таких растений. В чем опасность этого контакта, не расшифровывается. Опасность получить довесок к своим собственным генам, разумеется, является совершенно бредовой и высосанной из пальца. Помимо того, что написано чуть выше, нужно помнить, что человеческий (и не только) организм постоянно пропускает через свой кишечник массу животного и растительного генетического материала. И ничего — стручки и шерсть на нас расти пока еще не начали. И не вырастут — все, что попадает в наш желудок, в процессе пищеварения расщепляется на простейшие составляющие. У сложнейшей гигантской молекулы ДНК примерно столько же шансов попасть из кишечника в кровь неповрежденной, сколько у куска льда в доменной печи — дожить до следующего рассвета. Если провести грубую аналогию, то бессмысленно сыпать запчасти в бензобак — они все равно не встроятся в карбюратор и подвеску.
Вторая опасность, более реальная, заключается в опасности бесконтрольного распространения генетически модифицированных растений. Скажем, модифицируют культурную картошку генами чертополоха для повышенной устойчивости к вредителям, а получат в результате сверхплодовитый чертополох, устойчивый к пестицидам. Ну, а он возьмет да и заполонит колхозные поля, сведя на нет и без того тощие, на уровне тринадцатого года, российские картофельные урожаи. В таких опасениях, нужно признаться, есть доля истины. Однако не совсем понятно, как такие растения окажутся способными покинуть стены лаборатории. Вряд ли они вообще протянут дольше, чем лаборанту потребуется осознать, что он в очередной раз напортачил с реагентами. Ну, а печку даже сто раз модифицированное растение не переживет, если только у него в роду не найдется неопалимой купины. В общем, техника безопасности наподобие той, что применяется при работе с инфекционными агентами, гарантированно исключит такие прорывы.
Наконец, есть опасения, что модифицированные белки окажут негативное влияние на человеческий организм — например вызовут ужасную аллергию. Но уж здесь-то никто не мешает организовать предварительное тестирование и забраковать негодную продукцию теми же методами, что и лекарства.
Все нынешние баталии вокруг генных продуктов вызваны исключительно конкуренцией «старых» и «новых» методов производства. В производство «традиционной» с/х продукции вложены большие деньги, и сдаваться без боя их владельцы не хотят. Вот и появляются бредовые «исследования» о вреде модифицированных продуктов. «Прогрессисты», разумеется, в долгу не остаются — они тоже вложили деньги и твердо намерены их окупить. В результате же торговых войн у простых потребителей формируются черт знает какие представления о генетике в целом и модифицированных продуктах в частности. При всем при том куда более актуальным темам вроде массированного применения антибиотиков при производстве мясной продукции внимания уделяется заметно меньше.
Весьма популярной ошибкой является изобретение чудодейственной вакцины, впрыскивание которой немедленно вылечивает самые страшные болезни. Чушь. Вакцина не может никого и ни от чего вылечить. Это лишь средство для повышения иммунитета организма против конкретной болезни. Механизм ее действия следующий: иммунной системе предъявляются типичные антигены (белковые комплексы оболочки), характерные для возбудителя данной болезни. Иммунная система успешно настраивается на их уничтожение и создает нужные антитела (молекулярные комплексы, связывающиеся с антигенами), вследствие чего в будущем реакция на эти антигены оказывае