Спроектированная Вселенная?
За вечность, должно быть, было перепорчено огромное количество вселенных, до того, как оформилась эта система; было потрачено впустую много сил, сделано много бесплодных попыток, а процесс медленного, но непрерывного совершенствования в искусстве мироздания продолжался на протяжении бесконечных эпох.
Когда я учился во втором классе, моя учительница мимоходом обронила замечание, которое я не забуду никогда. Она сказала: «Бог так любил Землю, что расположил ее как раз на том расстоянии от Солнца, которое нужно». В мои шесть лет меня поразила простота и сила этого аргумента. Если бы Бог расположил Землю слишком далеко от Солнца, то все океаны замерзли бы. Если бы он расположил Землю слишком близко, то все они выкипели бы. Для учительницы это не только служило доказательством того, что Бог существует, но и означало, что он также благожелателен, раз так любил Землю, что расположил ее именно на том расстоянии от Солнца, которое нужно. Это произвело на меня глубокое впечатление.
Сегодня ученые говорят, что Земля существует в зоне обитания, как раз на таком расстоянии, чтобы было возможным существование воды – универсального растворителя, создающего химические вещества, необходимые для жизни. Если бы Земля находилась дальше от Солнца, она могла бы стать похожей на Марс – замерзшую пустыню, где низкие температуры создали твердую голую поверхность, на которой вода и даже углекислый газ часто замерзают до твердого состояния. Даже под поверхностью Марса находится вечная мерзлота, постоянный слой замерзшей воды. Если бы Земля находилась ближе к Солнцу, она могла бы стать похожей на Венеру, размеры которой почти совпадают с размерами Земли. Венера известна как планета парникового эффекта. Поскольку эта планета находится так близко к Солнцу, а атмосфера ее состоит из углекислого газа, энергия солнечного света захватывается Венерой и температуры взлетают до 500 °С. Вот почему Венера является самой горячей планетой Солнечной системы. Дожди серной кислоты, атмосферные давления, в сотни раз превышающие наши, и убийственные температуры превращают Венеру, похоже, в самую адскую планету Солнечной системы, в основном из-за того, что она находится ближе к Солнцу, чем Земля.
Рассматривая аргумент моей учительницы, ученые бы сказали, что он является примером антропного принципа, который гласит, что законы природы организованы таким образом, который делает возможным существование жизни и сознания. Вопрос о том, организованы ли эти законы каким-то проектировщиком или появились благодаря случаю, был предметом многих споров, особенно в последние годы, поскольку было обнаружено несметное множество случайностей или совпадений, которые делают возможным существование жизни и сознания. Для некоторых эти данные являются подтверждением существования некоего божества, которое намеренно организовало законы природы таким образом, чтобы существование жизни, а также наше существование стало возможным. Однако для других ученых эти данные означают, что мы являемся побочными продуктами ряда удачных случайностей. Или, возможно, если верить в положения теории инфляции и М-теории, существует Мультивселенная вселенных.
Чтобы правильно оценить сложность этих споров, сначала рассмотрим те совпадения, которые делают возможным существование жизни на Земле. Мы не просто живем в солнечной зоне обитания, мы также живем в ряде других зон обитания. Например, Луна имеет как раз такие размеры, которые необходимы для стабилизации орбиты Земли. Если бы Луна была намного меньше, то даже малейшие нарушения вращения Земли постепенно накапливались бы в течение сотен миллионов лет. Это вызвало бы раскачивание Земли на своей орбите, чреватое катастрофой, а также создало бы разительные изменения в климате, которые сделали бы жизнь на Земле невозможной. Компьютерные программы показывают, что без большой Луны (около трети размера Земли) земная ось за миллионы лет могла бы сместиться на целых 90°. Поскольку ученые считают, что для создания ДНК потребовались сотни миллионов лет климатической стабильности, то периодические отклонения Земли от ее оси вызвали бы катастрофические изменения погодных условий, что сделало бы создание ДНК невозможным. К счастью, Луна имеет как раз подходящий размер для того, чтобы стабилизировать земную орбиту, так что такая катастрофа не произойдет. (Луны Марса недостаточно велики, чтобы стабилизировать его вращение. В результате этого Марс начинает медленно вступать в следующую эпоху нестабильности. Астрономы считают, что в прошлом Марс мог отклоняться от своей оси на целых 45°.)
Благодаря малым приливным силам Луна медленно отодвигается от Земли со скоростью приблизительно 4 см в год. Примерно через 2 млрд лет она окажется слишком далеко, чтобы стабилизировать вращение Земли. Это может иметь катастрофические последствия для жизни на Земле. Спустя миллиарды лет не только Луны не будет в ночном небе – мы можем увидеть совершенно другой набор созвездий, когда Земля будет скакать на своей орбите. Погода на Земле так изменится, что существование жизни станет невозможным.
Геолог Питер Уорд и астроном Дональд Браунли из Университета Вашингтона написали: «Без Луны в мире не было бы ни лунного света, ни месяца, ни программы "Аполлон", было бы меньше поэзии, а каждая ночь была бы темной и безрадостной. Вполне вероятно, что без Луны не было бы птиц, секвой, китов, трилобитов, да и другие развитые формы жизни не украшали бы нашу Землю»{149}.
Подобным образом компьютерные модели нашей Солнечной системы показывают, что и присутствие Юпитера в нашей Солнечной системе является благоприятным для жизни на Земле, поскольку невероятно сильное гравитационное притяжение Юпитера помогает отбрасывать астероиды в открытый космос. Понадобился почти миллиард лет в эпоху метеоров, закончившуюся около 3,5–4,5 млрд лет назад, чтобы «очистить» Солнечную систему от обломков астероидов и комет, оставшихся после ее формирования. Если бы Юпитер был намного меньше, а его притяжение – намного слабее, то в нашей Солнечной системе было бы полно астероидов, которые сделали бы жизнь на Земле невозможной. Они бы падали в океаны и уничтожали всякую жизнь. Отсюда мы видим, что Юпитер тоже как раз нужного размера.
Мы также живем в зоне подходящих планетарных масс. Если бы Земля была чуть меньше, то ее гравитационное притяжение было бы настолько слабым, что она не могла бы удерживать кислород. Если бы Земля была слишком большой, то она сохранила бы многие из начальных ядовитых газов, что сделало бы невозможной жизнь на Земле. Масса Земли как раз такова, как нужно, чтобы поддерживать необходимый для жизни атмосферный состав.
Мы также живем в зоне подходящих планетарных орбит. Что примечательно, орбиты всех остальных планет, кроме Плутона, являются почти правильными окружностями, что делает столкновение планет в Солнечной системе практически невозможным. Это означает, что Земля не подойдет близко ни к одному из газовых гигантов, гравитация которых легко нарушила бы орбиту Земли. Это опять-таки благоприятное обстоятельство для жизни, которой необходимы сотни миллионов лет стабильности.
Земля также существует в зоне обитания галактики Млечный Путь, находясь от ее центра на расстоянии двух третей диаметра. Если бы Солнечная система располагалась слишком близко к центру Галактики, где таятся черные дыры, то поле излучения было бы столь сильным, что жизнь была бы невозможна. А если бы Солнечная система находилась слишком далеко от центра Галактики, то существовало бы недостаточно тяжелых элементов, чтобы создать необходимые компоненты жизни.
Ученые приводят множество примеров того, что Земля находится в мириаде зон обитания. Уорд и Браунли утверждают, что мы живем в границах такого узкого диапазона многих параметров или зон обитания, что, возможно, разумная жизнь на Земле – действительно уникальное явление для нашей Галактики, а возможно, даже для всей Вселенной. Они приводят впечатляющий список тех моментов, которые удивительным образом делают возможной разумную жизнь на Земле, а именно, что на Земле необходимое количество океанов, требуемая тектоника плит, содержание кислорода, теплосодержание, наклон оси и так далее. Если бы Земля лежала хотя бы вне одного из этих диапазонов, мы бы с вами не обсуждали этот вопрос.
Так была ли Земля расположена на пересечении этих зон обитания потому, что Бог любил ее? Возможно. Однако мы можем прийти к выводу, который не предполагает участие божества. Возможно, в космосе существуют миллионы мертвых планет, которые действительно находятся слишком близко к своим солнцам, чьи луны слишком малы и чьи Юпитеры слишком малы, или которые находятся слишком близко к центру их галактик. Что касается Земли, существование зоны обитания не обязательно означает, что Бог даровал нам особое благословение; возможно, это просто совпадение – один редкий пример среди миллионов мертвых планет в космосе, которые лежат за пределами зон обитания.
Греческий философ Демокрит, который выдвинул гипотезу существования атомов, писал: «Есть миры, бесконечные в своем количестве и разнообразные по размерам. В некоторых из них нет ни солнца, ни луны. В других больше одного солнца и луны. Расстояния между мирами неодинаковы, в некоторых направлениях их больше… Их разрушение происходит из-за столкновений между собой. Некоторые миры лишены животной и растительной жизни и всякой влаги»{150}.
К 2002 году астрономы открыли сотню экстрасолнечных планет, вращающихся по орбитам других звезд. Ученые открывают их приблизительно каждые две недели. Поскольку такие планеты не испускают собственного света, астрономы вычисляют их при помощи разнообразных средств непрямого наблюдения, наиболее надежными из которых являются поиски раскачивающейся основной звезды: она раскачивается вперед-назад по мере того, как планета размером с Юпитер вращается вокруг нее. Путем анализа доплеровского смещения света, испускаемого раскачивающейся звездой, можно вычислить, насколько быстро она движется, и применить законы Ньютона для вычисления массы ее планеты.
«Можно представить звезду и большую планету как партнеров, кружащихся в танце, держась за вытянутые руки. Планета меньших размеров с внешней стороны проходит большие расстояния по большей окружности, в то время как звезда-партнер перемещается маленькими шажками по очень малой окружности – движение по очень маленькой внутренней окружности и является тем "раскачиванием", которое мы наблюдаем в этих звездах»{151}, – говорит Крис Маккарти из Института Карнеги. Сегодня такие наблюдения настолько точны, что мы можем определить очень малые изменения в скорости (до 3 м/с – скорость быстрой ходьбы) в звезде на расстоянии сотен световых лет от нас.
Предлагаются и другие, более передовые методы обнаружения еще большего количества планет. Один из них – это поиски планеты в тот момент, когда она затмевает свою материнскую звезду, что ведет к некоторому снижению ее яркости. В течение 15–20 лет NASA запустит на орбиту свой интерферометрический космический спутник, который сможет обнаружить в открытом космосе планеты меньшего размера, сходные с Землей. (Поскольку яркость материнской звезды затмит планету, спутник будет использовать интерференцию света, чтобы обнулить яркое свечение материнской звезды и открыть нашим глазам землеподобную планету.)
До настоящего времени ни одна из обнаруженных нами экстрасолнечных планет размером с Юпитер не имеет сходства с Землей, и все они, вероятно, мертвы. Орбиты обнаруженных астрономами планет либо очень вытянуты, эксцентричны, либо проходят в непосредственной близости к материнской звезде; в обоих случаях существование в подобной зоне обитания планеты, похожей на Землю, было бы невозможным. В этих солнечных системах планета размером с Юпитер пересекала бы зону обитания, отшвыривая любую меньшую планету размером с Землю в открытый космос, что препятствовало бы формированию известной нам жизни.
Слишком вытянутые орбиты – обычное для космоса явление, настолько обычное, что в сущности, когда астрономы в 2003 году открыли «нормальную» солнечную систему, это событие попало на первые полосы. Астрономы Соединенных Штатов и Австралии с таким же восторгом объявили об открытии планеты размером с Юпитер, вращающейся вокруг звезды HD 70642. Необычность этой планеты (размеры которой вдвое превышают размеры Юпитера) состоит в том, что она вращается по орбите, имеющей форму окружности, при этом расстояние до ее солнца приблизительно соответствует расстоянию от Юпитера до нашего Солнца{152}.
Однако в будущем астрономы должны каталогизировать все близлежащие звезды, отнеся их к потенциальным солнечным системам. «Наша работа заключается в том, чтобы создать каталог всех двух тысяч ближайших наблюдаемых солнцеподобных звезд, которые находятся на расстоянии до 150 световых лет от нас, – говорит Пол Батлер из Института Карнеги в Вашингтоне, участвовавший в открытии первой экстрасолнечной планеты в 1995 году. – Мы преследуем двойную цель: провести исследование и составить первую перепись наших ближайших соседей по космосу, а также собрать первые данные для того, чтобы обратиться к фундаментальному вопросу о том, насколько обычным или редким феноменом является наша Солнечная система»{153}.
Космические случайности
Чтобы создать жизнь, наша планета должна была находиться в относительной стабильности в течение сотен миллионов лет. Но удивительно сложно создать мир, который был бы стабилен на протяжении такого времени.
Начнем с того, как образованы атомы, – с того факта, что протон чуть легче нейтрона. Это означает, что, если бы протон был всего лишь на один процент тяжелее, он бы распался до нейтрона, все ядра стали бы неустойчивыми и расщепились. Атомы бы разлетелись в стороны, что сделало бы жизнь невозможной.
Еще одна случайность, которая делает возможной жизнь на Земле, – это тот факт, что протон устойчив и не распадается с образованием позитрона. Эксперименты показали, что срок жизни протона поистине астрономически велик: он больше срока жизни Вселенной[36]. Для того чтобы создать устойчивую ДНК, протоны должны оставаться устойчивыми на протяжении как минимум сотен миллионов лет.
Если бы сильное ядерное взаимодействие было чуть слабее, то такие ядра, как ядра дейтерия, разлетелись бы в стороны и ни один из элементов Вселенной нельзя было бы построить внутри звезд путем нуклеосинтеза. Если бы сильное ядерное взаимодействие было чуть сильнее, то звезды сожгли бы свое ядерное топливо слишком быстро и жизнь не смогла бы развиться.
Если мы изменим силу слабого ядерного взаимодействия, то обнаружим, что жизнь опять-таки невозможна. Нейтрино, действующие через слабое ядерное взаимодействие, необходимы для того, чтобы уносить энергию из взрывающихся сверхновых. Эта энергия, в свою очередь, отвечает за создание элементов выше железа. Если бы слабое ядерное взаимодействие было чуть слабее, нейтрино вряд ли бы вообще смогли взаимодействовать, что означает, что сверхновые не смогли бы создать элементы выше железа. Если бы слабое взаимодействие было чуть сильнее, то нейтрино не могли бы покинуть звездное ядро, что опять-таки воспрепятствовало бы созданию высших элементов, из которых состоят наши тела и весь мир.
В сущности, ученые составили длинные списки таких удачных космических случайностей. Видя этот внушительный список, с удивлением обнаруживаешь, как много знакомых констант Вселенной находятся в очень узком диапазоне, в пределах которого возможна жизнь на Земле. Если изменить всего лишь одну из этих случайностей, звезды никогда бы не образовались, Вселенная разлетелась бы в стороны, ДНК не существовала бы, известная нам жизнь была бы невозможной, Земля бы перевернулась или замерзла и так далее.
Чтобы подчеркнуть, насколько примечательной является сложившаяся ситуация, астроном Хью Росс уподобил ее «Боингу-747», полностью собранному ураганом, наткнувшимся на свалку старых автомобилей.
Антропный принцип
Все приведенные выше аргументы сводятся к антропному принципу. Существует несколько позиций, которые можно занять относительно этого противоречивого принципа. Моя учительница во втором классе считала, что эти удачные совпадения предполагали существование великого проекта или плана. Как когда-то сказал физик Фримен Дайсон, «Вселенная словно знала, что мы придем». Это иллюстрация сильного антропного принципа, который заключается в идее того, что точная настройка физических констант была не случайностью, а предполагает некий проект. (Слабый антропный принцип просто утверждает, что физические константы Вселенной таковы, что возможно существование жизни и разума.)
Физик Дон Пейдж суммировал различные формы антропного принципа, предлагавшиеся в разные годы:
Слабый антропный принцип: «То, что мы видим во Вселенной, ограничивается требованием нашего существования в качестве наблюдателей».
Сильно-слабый антропный принцип: «По крайней мере в одном мире… из Вселенной многих миров должна развиваться жизнь».
Сильный антропный принцип: «Вселенная должна нести в себе определенные качества, чтобы в какой-то момент в ней развилась жизнь».
Конечный антропный принцип: «Разум должен развиться во Вселенной, после чего он никогда не погибнет»{154}.
Одним из физиков, всерьез воспринимающих сильный антропный принцип и утверждающих, что это признак существования Бога, является Вера Кистяковски, физик из Массачусетского технологического института. Она говорит: «Утонченное совершенство физического мира, открывающееся нашему научному взору, требует присутствия божественного»{155}. Еще одним ученым, поддерживающим это мнение, является Джон Полкинхорн, физик, занимавшийся частицами, который отказался от должности в Кембриджском университете и стал священником англиканской церкви. Он пишет о том, что Вселенная – это «не просто „какой-то мир“, она особенна и тонко настроена для жизни, поскольку является созданием Творца, чья воля в том, чтобы все было именно так»{156}. И в самом деле, сам Исаак Ньютон, которому принадлежит концепция непреложных законов, управляющих движением планет и звезд без всякого божественного вмешательства, считал, что изящество этих законов указывает на существование Бога.
Но нобелевский лауреат Стивен Вайнберг не поддерживает такую точку зрения. Он признает всю притягательность антропного принципа: «Для людей практически непреодолимым является стремление верить в то, что мы имеем какое-то особое отношение к Вселенной, что человеческая жизнь не просто более или менее нелепый результат цепи случайностей, простирающейся до первых трех минут после Большого взрыва, а что мы были каким-то образом встроены с самого начала». Однако в заключение он говорит о том, что сильный антропный принцип представляет собой «едва ли нечто большее, чем пустую мистическую бессмыслицу»{157}.
Остальные физики также не слишком убеждены в силе антропного принципа. Ныне покойный физик Хайнц Пейджелс был сильно увлечен антропным принципом, но в конечном счете потерял к нему интерес, поскольку этот принцип не содержал в себе прогностической силы. Эта теория не подлежит проверке. Кроме того, не существует способов извлечь из нее какую-либо новую информацию. Вместо этого она несет бесконечный поток пустых тавтологий: «Мы здесь потому, что мы здесь».
Гут также отвергает антропный принцип, утверждая: «Мне трудно поверить, что кто-либо вообще стал бы использовать антропный принцип, если бы у него было лучшее объяснение. Я еще, к примеру, не слышал об антропном принципе в мировой истории… К антропному принципу обращаются тогда, когда не могут придумать ничего лучше»{158}.
Мультивселенная
Другие ученые, такие как сэр Мартин Рис из Кембриджского университета, считают, что эти космические случайности являются доказательством существования Мультивселенной. Рис считает, что единственным способом объяснения того факта, что мы живем в невероятно узкой диапазонной полосе сотен совпадений, является постулирование существования миллионов параллельных вселенных. В этой Мультивселенной большинство вселенных мертвы. Протон в них неустойчив. Атомы так и не создаются. ДНК не образуется. Вселенные либо преждевременно коллапсируют, либо практически немедленно замерзают. Но в нашей Вселенной произошел ряд космических случайностей, при этом совершенно не обязательно считать, что Господь приложил к этому руку; можно основываться просто на законе больших величин.
В каком-то смысле от сэра Мартина Риса в последнюю очередь можно было бы ожидать услышать об идее параллельных вселенных. Он королевский астроном Великобритании, и на нем большая ответственность за формирование взгляда на Вселенную. Седовласый, солидный, безупречно одетый, Рис в равной степени хорошо говорит как о космических чудесах, так и о заботах публики.
И это, по его мнению, не случайность, что Вселенная построена для возможности существования жизни. Слишком многое должно совпасть, чтобы Вселенная оказалась в столь узком диапазоне, позволяющем жизни существовать «То, что кажется нам тонкой настройкой, от которой зависит существование, может быть, всего лишь совпадение, – пишет Рис. – Когда-то и я думал именно так. Но сейчас этот взгляд кажется мне слишком узким… Если мы примем его, разнообразные, будто бы особенные черты нашей Вселенной, которые теологи когда-то приводили в качестве доказательств существования Провидения или изначального проекта, не вызовут удивления»{159}.
Рис попытался подкрепить свои аргументы перечислением некоторых из этих концептов. Он утверждает, что Вселенная, по видимости, управляется шестью параметрами, каждый из которых поддается измерению и является тонко настроенным. Эти величины должны удовлетворять условиям жизни, или же они создают мертвые вселенные.
Первый – то, что параметр ε равен 0,007 – относительное количество водорода, который конвертируется в гелий путем синтеза в момент Большого взрыва. Если бы эта величина имела значение не 0,007, а 0,006, это ослабило бы силу ядерного взаимодействия, протоны и нейтроны не смогли бы соединиться. Невозможным оказалось бы образование дейтерия (ядер с протоном и одним нейтроном), а отсюда следует, что более тяжелые элементы так и не образовались бы в звездах, а вся Вселенная состояла бы из сплошного водорода. Даже малейшее снижение сильного взаимодействия вызвало бы нестабильность периодической таблицы химических элементов, а количество устойчивых элементов, необходимых для создания жизни, уменьшилось бы.
Если бы ε = 0,008, то синтез происходил бы настолько быстро, что после Большого взрыва не осталось бы водорода и сегодня не было бы звезд, дающих свою энергию планетам. Или, возможно, два протона оказались бы связаны вместе, что также сделало бы синтез в звездах невозможным. Рис указывает на вывод Фреда Хойла, что изменение силы ядерного взаимодействия всего лишь на 4 % сделало бы невозможным образование углерода в звездах, а это, в свою очередь, стало бы препятствием для формирования высших элементов и, следовательно, для возникновения жизни{160}. Хойл обнаружил, что при незначительном изменении силы ядерного взаимодействия бериллий становится настолько неустойчивым, что не может служить мостом для образования атомов углерода.
Второй параметр – N, равное 1036, – это частное от деления силы электрического взаимодействия на силу гравитации. Этот параметр показывает, насколько слаба гравитация. Если бы гравитация была еще слабее, то стали бы невозможны конденсация звезд в плотные скопления вещества и создание невероятно высоких температур, необходимых для синтеза. Отсюда следует, что звезды не светились бы и планеты погрузились бы в замораживающую тьму.
Но если бы гравитация была чуть сильнее, это вызвало бы слишком быстрый разогрев звезд и они сожгли бы свое топливо слишком быстро. При таком варианте развития событий жизнь просто не успела бы зародиться. Кроме того, более сильная гравитация вызвала бы более раннее образование галактик, и они были бы слишком маленькими. Звезды встречались бы в более плотных скоплениях, что стало бы причиной катастрофических столкновений между различными звездами и планетами.
Третьим параметром является Ω – относительная плотность Вселенной. Если бы Ω была слишком мала, то Вселенная расширилась бы и остыла слишком быстро. Но если бы Ω была слишком велика, то Вселенная сжалась бы еще до начала всякой жизни. Рис пишет: «Через одну секунду после Большого взрыва Ω не могла отличаться от единицы больше чем на 10–15, чтобы сегодня, 10 млрд лет спустя, Вселенная все еще продолжала расширяться, а значение Ω при этом наверняка не ушло бы далеко от единицы»{161}.
Четвертым параметром является Λ, космологическая константа, которая определяет ускорение нашей Вселенной. Если бы эта константа была всего лишь в несколько раз больше, то создалась бы антигравитация, которая разорвала бы нашу Вселенную, и это стало бы причиной ее немедленного Большого охлаждения, при котором жизнь невозможна. Но если бы значение космологической константы было отрицательным, то Вселенная бы коллапсировала в Большом сжатии, причем это случилось бы слишком быстро, чтобы смогла сформироваться какая-либо жизнь. Иными словами, чтобы существование жизни оказалось возможным, космологическая константа, как и Ω, также должна находиться в определенном узком диапазоне.
Пятым параметром является Q – средняя относительная амплитуда флуктуации в космическом микроволновом излучении, равная 10–5. Если бы это число было чуть меньше, то Вселенная имела бы чрезвычайно однородную структуру, будучи безжизненной массой газа и пыли, которые никогда не конденсировались бы в сегодняшние звезды и галактики. Вселенная была бы темной, однородной, лишенной характерных черт и безжизненной. Если бы значение Q было больше, то конденсация вещества произошла бы раньше, при этом оно конденсировалось бы в огромные сверхгалактические структуры. Такие «огромные куски вещества конденсировались бы в черные дыры»{162}, пишет Рис. И эти черные дыры были бы тяжелее, чем целые галактические скопления. Любые звезды, образование которых возможно в таком огромном скоплении газа, располагались бы слишком плотно, а потому существование планетарных систем было бы невозможным.
Последним параметром является D, то есть количество пространственных измерений. Благодаря заинтересованности в М-теории физики возвратились к вопросу о том, является ли жизнь возможной в дополнительных высших или низших измерениях. Если пространство одномерно, то, вероятно, существование жизни невозможно, поскольку вселенная становится слишком упрощенной. Как правило, при попытках физиков применить квантовую теорию к одномерным вселенным мы обнаруживаем, что частицы проходят одна сквозь другую без всякого взаимодействия. Поэтому вполне возможно, что вселенные, существующие в одном измерении, не могут нести жизнь, поскольку частицы не могут «приклеиться» одна к другой, образуя более сложные объекты.
В двух измерениях мы также сталкиваемся с проблемой, поскольку жизненные формы, вероятно, дезинтегрировали бы. Представьте двумерную расу существ, обитателей Флатландии, живущих на поверхности стола. Представьте, что они пытаются есть. Пищевод, тянущийся ото рта к заднему проходу, расщепил бы обитателя Флатландии надвое, и он распался бы. Таким образом, трудно представить, как обитатель Флатландии мог бы существовать, не распадаясь на части.
Еще один аргумент из области биологии указывает на то, что разумная жизнь не может существовать менее чем в трех измерениях. Наш мозг состоит из большого количества пересекающихся нейронов, объединенных обширной электрической сетью. Если бы вселенная была одно– или двумерной, было бы невозможно строить сложные нейронные сети, особенно в условиях короткого замыкания при наложении их друг на друга. В условиях низших измерений мы жестко ограничены количеством сложных логических схем и нейронов, которые можно разместить на маленьком участке. Например, наш собственный мозг состоит из 100 млрд нейронов, что приблизительно равно количеству звезд в галактике Млечный Путь; при этом каждый нейрон связан с 10 000 других нейронов. Такую сложность было бы трудно воспроизвести в условиях меньшего количества измерений.
В четырех пространственных измерениях возникает следующая проблема: планеты неустойчивы на своих околосолнечных орбитах. На смену закону обратных квадратов Ньютона приходит закон обратных кубов. В 1917 году Пауль Эренфест, сотрудник Эйнштейна, размышлял о том, какой была бы физика в четырех измерениях. Он проанализировал уравнение, называемое уравнением Пуассона – Лапласа (которое управляет движением планетарных объектов, а также электрическими зарядами в атомах), и обнаружил, что орбиты теряют свою устойчивость в четырех и более пространственных измерениях. Поскольку электроны, подобно планетам, испытывают беспорядочные столкновения, это означает, что атомы и солнечные системы, вероятно, не могут существовать в большем количестве измерений. Иными словами, трехмерный случай – особый.
С точки зрения Риса, антропный принцип является одним из наиболее убедительных аргументов в пользу существования Мультивселенной. Точно так же как существование зон обитания для Земли предполагает наличие экстрасолнечных планет, существование зон обитания для Вселенной предполагает наличие параллельных вселенных. Рис комментирует это так: «Если есть большой ассортимент одежды, то никак не удивительно обнаружить в нем подходящий костюм. Если существует много вселенных, каждая из которых управляется различным набором величин, то будет и одна, где есть особый набор величин, пригодный для жизни. И мы находимся именно в ней»{163}. Иными словами, Вселенная такова, какая она есть, благодаря закону больших величин, действующему среди многих вселенных Мультивселенной, а вовсе не благодаря некоему великому проекту.
Вайнберг, похоже, с этим согласен. В сущности, он считает идею Мультивселенной довольно интересной для размышлений. Ему никогда не нравилась та идея, что время внезапно могло начать свое существование в момент Большого взрыва и что до этого момента времени просто не существовало. В Мультивселенной же происходит вечное создание вселенных.
Существует еще одна, несколько необычная причина, по которой Рис предпочитает идею Мультивселенной. Он считает, что Вселенная содержит в себе небольшое количество «безобразия». К примеру, земная орбита несколько эллиптична. Если бы она была идеально круговой, то можно было бы заявить, подобно теологам, что Земля представляет собой побочный продукт божественного вмешательства. Но орбита имеет слегка эллиптическую форму, что указывает на некоторое количество беспорядочности в пределах диапазонов зон обитания. Подобным образом и космологическая константа не равна нулю, но весьма мала, что указывает на то, что наша Вселенная «является не более особенной, чем того требует наше присутствие». Все это не противоречит тому, что наша Вселенная была создана случайно.
Эволюция вселенных
Будучи скорее астрономом, нежели философом, Рис говорит о том, что все эти теории должны подлежать проверке. В сущности, именно по этой причине он предпочитает идею Мультивселенной среди соперничающих мистических теорий. Рис считает, что теорию Мультивселенной можно будет проверить в течение ближайших двадцати лет.
Один из вариантов теории Мультивселенной действительно можно проверить уже сейчас. Физик Ли Смолин идет еще дальше Риса и предполагает, что имела место эволюция вселенных, аналогичная эволюции Дарвина, которая в конечном счете привела к образованию таких вселенных, как наша. К примеру, в теории беспорядочной инфляции дочерние вселенные характеризуются физическими константами, несколько отличными от констант вселенной-матери. Если вселенные могут возникать из черных дыр, то, по мнению некоторых физиков, доминирующими вселенными в Мультивселенной будут вселенные с наибольшим количеством черных дыр. Это означает, что, как и в животном царстве, вселенные, дающие начало наибольшему количеству «детей», в конечном счете становятся доминирующими и распространяют свою генетическую информацию – физические константы природы. Если это верно, то у нашей Вселенной в прошлом могло быть бесчисленное множество предков-вселенных, а сама она является побочным продуктом триллионов лет естественного отбора. Иными словами, наша Вселенная является побочным продуктом выживания наиболее приспособленных, что означает, что она – «дитя» вселенных с наибольшим количеством черных дыр.
Хотя дарвиновская эволюция для вселенных является необычной и оригинальной идеей, Смолин считает, что ее можно проверить путем простого подсчета количества черных дыр. Наша Вселенная должна быть максимально благоприятной для создания черных дыр. (Однако еще предстоит доказать, что вселенные с наибольшим количеством черных дыр так же благоприятны для жизни, как наша.)
Поскольку эту идею можно проверить, можно рассмотреть и контрпримеры. Например, можно показать, гипотетически настроив физические параметры вселенной, что черные дыры наиболее активно рождаются в безжизненных вселенных. К примеру, можно было бы показать, что во вселенной, где ядерное взаимодействие было бы намного более сильным, звезды выгорели бы чрезвычайно быстро, в результате чего образовалось бы большое количество сверхновых, которые затем схлопнулись бы в черные дыры. В такой вселенной более высокий уровень ядерного взаимодействия означает, что жизнь звезд длится в течение краткого промежутка времени, а отсюда следует, что зарождение жизни невозможно. Но в такой вселенной также могло бы быть намного больше черных дыр, что опровергает теорию Смолина. Преимущество этой теории состоит в том, что ее можно проверить, воспроизвести или опровергнуть (признак любой по-настоящему научной теории). Время покажет, выстоит она или нет.
Хотя любая теория, включающая в себя порталы-червоточины, суперструны и дополнительные высшие измерения, лежит за пределами наших экспериментальных возможностей, сейчас проводятся и планируются новые эксперименты, при помощи которых можно будет определить истинность этих теорий. Мы сейчас находимся в самом разгаре переворота в экспериментальной науке, и вся мощь спутников, космических телескопов, детекторов гравитационных волн и лазеров привлекается для решения этих вопросов. Богатый урожай, принесенный этими экспериментами, вполне мог бы разрешить некоторые из глубочайших вопросов космологии.