В поисках эхо-сигналов из одиннадцатого измерения
Серьезные заявления требуют серьезных доказательств.
Какое бы глубокое впечатление ни производили параллельные вселенные, порталы в другие измерения, да и сами дополнительные высшие измерения, все же требуются неопровержимые доказательства их существования. Как отмечает астроном Кен Кросвелл, «другие вселенные – словно хмельной напиток дальних стран: о них можно говорить все что захочешь, безо всякого опровержения, поскольку астрономы их так и не видят»{164}. Раньше проверка многих из этих прогнозов считалась безнадежным предприятием в условиях примитивности нашей экспериментальной техники. Однако последние достижения в области компьютерной, лазерной и спутниковой технологий подвели многие из этих теорий соблазнительно близко к экспериментальной проверке.
Прямая проверка этих теорий может оказаться чересчур сложной, однако косвенная нам по силам. Иногда мы забываем, что астрономия во многом основана на косвенных методах. К примеру, никто никогда не был на Солнце или других звездах, однако же нам известно, из чего состоят звезды, а выяснили мы это при помощи света, испускаемого этими светящимися объектами. Анализируя оптический спектр звездного света, мы узнали, что звезды состоят в основном из водорода и некоторого количества гелия. Подобным образом никто никогда не видел черной дыры: в сущности, черные дыры невидимы и их нельзя наблюдать непосредственно. Однако мы можем получить косвенное доказательство их существования путем поисков аккреционных дисков и вычисления массы этих мертвых звезд.
Во всех этих экспериментах мы ведем поиски эхо-сигналов, исходящих от звезд и черных дыр, с целью определить их природу. Подобным образом и одиннадцатое измерение может находиться вне нашей прямой досягаемости, но новые революционные инструменты, имеющиеся в нашем распоряжении, делают реальными потенциальные способы проверки теории инфляционного расширения и теории суперструн.
GPS и теория относительности
Простейшим примером переворота в исследованиях теории относительности, произведенного спутниками, является GPS[37], 24 спутника которой беспрерывно вращаются вокруг Земли, испуская точные синхронизированные сигналы, которые позволяют определить положение объекта с невероятной точностью. Эта глобальная система стала незаменимым элементом в навигации, торговле, а также при проведении военных действий. Все – от компьютеризованных карт в автомобилях до крылатых ракет – основано на возможности синхронизации сигналов с точностью до 50 миллиардных долей секунды для определения положения объекта на Земле с точностью до 14 м{165}. Но для того, чтобы обеспечить столь высокую точность, ученым необходимо вычислить небольшие поправки к законам Ньютона согласно теории относительности, которая утверждает, что при движении спутников произойдет небольшое смещение частоты радиоволн{166}. В сущности, если мы неосмотрительно пренебрежем поправками согласно теории относительности, то часы на спутниках глобальной системы будут спешить на 40 миллионных долей секунды в день и на данные системы полагаться будет нельзя. Таким образом, теория относительности абсолютно необходима для торговли и военных. Физику Клиффорду Уиллу как-то довелось инструктировать генерала ВВС США на тему необходимых поправок для GPS и определения положения, исходящих из теории относительности Эйнштейна. Позднее Уилл заметил, что теория относительности достигла стадии зрелости, раз уже даже высшие офицеры Пентагона нуждаются в инструктаже по теории относительности.
Детекторы гравитационных волн
До сих пор все, что известно об астрономии, приходило к нам в форме электромагнитного излучения, будь это звездный свет, радио– или микроволновые сигналы из глубин космоса. Сегодня ученые вводят первое новое средство для научных открытий, а именно гравитацию[38]. «Каждый раз, как мы смотрели на небо по-новому, мы видели новую Вселенную»{167}, – говорит Гари Сандерс из Калифорнийского технологического института, заместитель директора проекта гравитационных волн.
Впервые о гравитационных волнах заговорил Эйнштейн в 1916 году. Представьте, что случилось бы, если бы Солнце исчезло. Припоминаете аналогию шара для игры в боулинг, утопающего в матрасе? Или еще лучше – в батуте? Если этот шар внезапно убрать, то батут немедленно возвратится в свое первоначальное состояние, что создаст волны, бегущие к краю батута. Если шар для боулинга заменить Солнцем, то мы увидим, что гравитационные волны движутся с определенной скоростью, а именно со скоростью света.
Хотя позднее Эйнштейн нашел точное решение для своих уравнений, допускавших существование гравитационных волн, он отчаялся увидеть при жизни подтверждение своего прогноза. Гравитационные волны чрезвычайно слабы. Даже ударные взрывные волны, образующиеся при столкновениях звезд, недостаточно сильны, чтобы их можно было измерить в ходе проводимых в настоящее время экспериментов.
Пока что существование гравитационных волн подтверждено лишь косвенно. Два физика, Рассел Халс и Джозеф Тейлор-мл., выдвинули следующую гипотезу: если изучить двойные звездные системы, в которых вращающиеся звезды движутся одна за другой в космическом пространстве, то окажется, что каждая звезда испускает поток гравитационных волн, похожих на волны, образующиеся при размешивании патоки. При этом орбита обеих звезд постепенно становится все меньше и меньше. Эти ученые изучили смертельную спираль двух нейтронных звезд, постепенно приближающихся друг к другу. Объектом их исследования стала двойная система нейтронных звезд PSR 1913+16, которая находится на расстоянии около 16 000 световых лет от Земли. Звезды этой системы совершают полный виток одна вокруг другой за 7 часов 45 минут, и в этом процессе в космическое пространство испускаются гравитационные волны.
Применив теорию Эйнштейна, эти ученые обнаружили, что две рассматриваемые звезды должны сближаться друг с другом на один миллиметр за каждый полный виток. Хотя такое расстояние фантастически мало, в год оно увеличивается почти до метра, в то время как орбита в 700 000 км медленно уменьшается в размерах. Эта новаторская работа показала, что уменьшение орбиты в точности соответствует предсказаниям теории Эйнштейна на основе гравитационных волн. (В сущности, уравнения Эйнштейна предсказывают, что звезды в конце концов столкнутся через 240 млн лет вследствие потери энергии, испускаемой в космос в виде гравитационных волн.) За свою работу Рассел Халс и Джозеф Тейлор-мл. получили Нобелевскую премию по физике в 1993 году{168}.
Мы можем также пойти в обратном направлении и использовать этот точный эксперимент, чтобы измерить, насколько точна сама общая теория относительности. При проведении вычислений в обратном порядке выясняется, что общая теория относительности верна как минимум на 99,7 %.
LIGO – лазерная обсерватория – интерферометр гравитационных волн
Чтобы получить полезную информацию о ранней Вселенной, необходимы прямые наблюдения гравитационных волн. В 2003 году первый действующий детектор гравитационных волн LIGO (Laser Interferometer Gravitational-Wave Observatory – лазерная обсерватория – интерферометр гравитационных волн) наконец был запущен, реализовав тем самым давнюю мечту раскрыть тайны Вселенной посредством гравитационных волн. Целью детектора LIGO является регистрация космических событий, которые происходят слишком далеко или имеют слишком маленькие масштабы, чтобы их можно было наблюдать при помощи наземных телескопов. Это, например, такие события, как столкновения черных дыр или нейтронных звезд.
Обсерватория LIGO состоит из двух гигантских лазерных установок, одна из которых расположена в Хэнфорде (штат Вашингтон), а другая – в Ливингстоне (штат Луизиана). Каждая из установок снабжена двумя трубами по 4 км длиной каждая, которые образуют гигантскую букву L. Внутри каждой трубы включается лазер. В углу буквы L оба лазерных луча сталкиваются, и происходит интерференция их волн. Обычно в отсутствие каких-либо возмущений две волны синхронизируются и взаимоуничтожаются. Но если в устройство попадает даже малейшая гравиволна, образовавшаяся при столкновении черных дыр или нейтронных звезд, то одно плечо уменьшается или увеличивается иным образом, нежели второе. Такого возмущения достаточно, чтобы разрушить хрупкий баланс двух лазерных лучей – они не взаимоуничтожаются, а создают характерную картину интерференции волн, которую можно подвергнуть детальному компьютерному анализу. Чем больше гравитационная волна, тем больше несовпадение между двумя лазерными лучами и тем больше интерференция.
Обсерватория LIGO являет собой чудо техники. Поскольку молекулы воздуха могут поглощать свет лазеров, трубку, по которой проходит свет, вакуумируют до давления в одну триллионную часть атмосферы. Каждый детектор занимает около 8,4 м³ пространства, что означает, что в обсерватории LIGO находится самый большой объем искусственного вакуума в мире. Особая чувствительность LIGO объясняется, в частности, конструкцией зеркал, управляемых крошечными магнитами размером с муравья, которых всего шесть. Зеркала так отполированы, что точность их составляет до одной тридцатимиллиардной доли дюйма. «Представьте, что Земля была бы настолько гладкой. Тогда средняя гора возвышалась бы не более чем на дюйм (около 2,5 см)»{169}, – говорит Гарилинн Биллингсли, в обязанности которой входит контроль зеркал. Конструкция этих зеркал настолько тонка, что их можно сдвигать менее чем на микрон, что делает их, вероятно, самыми чувствительными зеркалами в мире. «У большинства инженеров, занимающихся системами контроля и управления, просто отвисает челюсть, когда они слышат о том, что мы пытаемся сделать»{170}, – утверждает Майкл Цукер, ученый, принимающий участие в проекте LIGO.
Поскольку детектор LIGO столь тонко сбалансирован, иногда его работе мешают крошечные вибрации, идущие от самых нежелательных источников. К примеру, установку LIGO в Луизиане нельзя запускать днем из-за лесорубов, которые валят деревья в полукилометре от детектора. (Детектор LIGO настолько чувствителен, что его нельзя было бы запускать в течение дня даже в том случае, если рубка леса проходила бы на расстоянии полутора километров.) Даже ночью вибрации, источником которых являются товарные составы, проходящие в полночь и в шесть часов утра, ограничивают продолжительность непрерывной работы детектора LIGO.
Даже столь слабое явление, как волны, бьющие о берег на расстоянии нескольких километров от установки, может повлиять на результаты. Волны океана бьют о берег Северной Америки в среднем каждые шесть секунд, создавая низкий гул, который может быть зафиксирован лазерами. Частота этого шума настолько низка, что он, в сущности, может распространяться прямо сквозь землю. «Это похоже на рокот, – так комментирует этот шум Цукер. – В сезон ураганов в Луизиане это становится просто кошмаром»{171}. Кроме того, на детектор LIGO оказывают влияние приливы, создаваемые гравитацией Луны и Земли, что создает возмущение в несколько миллионных долей дюйма.
Для того чтобы исключить эти невероятно малые возмущения, инженеры детектора LIGO предприняли чрезвычайные меры для обеспечения изоляции установки. Каждая лазерная система покоится на вершине четырех огромных платформ из нержавеющей стали, расположенных одна поверх другой; каждый уровень разделен рессорами для погашения всех вибраций. Каждый оптический инструмент снабжен собственной системой сейсмической изоляции; цементный пол 75 см толщиной не соединен со стенами{172}.
Детектор LIGO представляет собой часть интернационального консорциума, в который также входят французско-итальянский детектор под названием VIRGO в Пизе (Италия), японский детектор TAMA, расположенный за пределами Токио, а также британско-немецкий детектор GEO600 в Ганновере (Германия). В целом общая стоимость постройки детектора LIGO обойдется в 292 млн долларов (плюс 80 млн долларов на пуско-наладочные работы и модернизацию), что делает его самым дорогим проектом из когда-либо финансировавшихся Национальным научным фондом{173}.
Однако, даже несмотря на такую чувствительность детектора, многие ученые признают, что LIGO, возможно, не обладает достаточной чувствительностью для улавливания действительно интересных событий за время своей работы. Следующая модернизация установки, LIGO II, намечается в 2007 году (при условии получения финансирования). Если детектор LIGO не уловит гравитационных волн, то смело можно ставить на то, что это получится у LIGO II. Кеннет Либбрехт, ученый, принимающий участие в проекте LIGO, заявляет, что LIGO II увеличит чувствительность оборудования в тысячу раз: «Вы переходите от [улавливания] одного события раз в 10 лет, что довольно мучительно, к одному событию в три дня, что уже приятно»{174}[39].
Чтобы детектор LIGO уловил сигнал от столкновения двух черных дыр (на расстоянии до 300 млн световых лет), ученым пришлось бы ждать от года до тысячи лет. Многие астрономы, возможно, сомневаются в целесообразности изучения подобных событий при помощи детектора LIGO, если это означает, что свидетелями этого события станут их пра-пра-пра… правнуки. Но как выразился один из участников проекта LIGO Питер Солсон: «Людям нравится решать эти технически сложные задачи подобно тому, как строители средневековых соборов продолжали свою работу, зная, что они, возможно, не увидят оконченной церкви. Но если бы не существовало такой большой вероятности увидеть гравитационные волны в течение моей жизни, то я бы не работал в этой области. Это не просто нобелевская лихорадка… Характерным отличием нашей работы является степень точности, к которой мы стремимся; если вы работаете таким образом, то вы двигаетесь в правильном направлении»{175}. Вероятность обнаружения поистине интересного события в течение нашей жизни будет намного выше при использовании детектора LIGO II, который, возможно, обнаружит сталкивающиеся черные дыры на расстояниях до 6 млрд световых лет с частотой от десятка в день до десятка в год{176}.
Однако даже детектор LIGO II не будет обладать достаточной чувствительностью для обнаружения гравитационных волн, испускаемых в момент его создания. Для этого нам придется подождать еще 15–20 лет до запуска космической лазерной антенны-интерферометра LISA[40].
Детектор гравитационных волн LISA
LISA (Laser Interferometry Space Antenna – космическая лазерная антенна-интерферометр) представляет собой следующее поколение детекторов гравитационных волн. В отличие от LIGO, он будет базироваться в открытом космосе. Около 2010 года NASA совместно с ESA планирует запуск трех спутников, которые будут выведены на солнечную орбиту на расстоянии почти 50 млн км от Земли[41]. Три лазерных детектора образуют в космосе равносторонний треугольник (со стороной 5 млн км). Каждый спутник будет оснащен двумя лазерами, которые обеспечат непрерывный контакт с двумя другими спутниками. Хотя мощность испускаемых лазерами лучей будет составлять всего лишь 0,5 Вт, оптическое оборудование спутников настолько чувствительно, что оно сможет улавливать вибрации, исходящие от гравитационных волн, с точностью до 10–21 (что соответствует смещению на одну сотую размера одного атома). LISA должна уловить гравитационные волны от источников, находящихся на расстоянии до 9 млрд световых лет от нас, охватывая таким образом бо́льшую часть видимой Вселенной.
Антенна-интерферометр LISA будет настолько точна, что, возможно, зафиксирует первоначальные ударные волны самого Большого взрыва[42]. Это представит нам наиболее точную картину момента сотворения. Если все будет идти по плану, то LISA сможет заглянуть в первую триллионную долю секунды после Большого взрыва, что, вероятно, сделает ее самым мощным инструментом для космологических исследований{177}. Считается, что LISA сможет представить первые экспериментальные данные относительно точной природы единой теории поля – теории всего.
Одной из важных целей антенны-интерферометра LISA (или ее преемников) является представление неоспоримого доказательства – «дымящегося ружья» для теории инфляционного расширения Вселенной[43]. До сих пор теория инфляции вписывается во все космологические данные (плоскость, флуктуации в космическом фоне и т. д.). Но это не означает, что данная теория верна. Чтобы окончательно решить этот вопрос, ученые хотят изучить гравитационные волны, пущенные в самом процессе инфляционного расширения. «Отпечаток пальца» гравитационных волн, образовавшихся в момент Большого взрыва, должен показать разницу между теорией инфляционного расширения и любой другой конкурирующей теорией. Некоторые ученые, к примеру Кип Торн из Калифорнийского технологического института, считают, что LISA сможет установить, является ли правильной хотя бы одна из вариаций струнной теории. Как я уже объяснял в главе 7, согласно теории инфляционного расширения Вселенной гравитационные волны, возникающие в результате Большого взрыва, должны быть довольно интенсивными, чтобы соответствовать стремительному, экспоненциальному расширению молодой Вселенной; в то же время экпиротическая модель говорит о более медленном расширении, которое сопровождалось более плавными гравитационными волнами. Антенна-интерферометр LISA должна опровергнуть различные конкурирующие теории Большого взрыва, а также подвергнуть серьезному испытанию струнную теорию.
Линзы и кольца Эйнштейна
Еще одним мощным средством исследования космоса могут служить гравитационные линзы и кольца Эйнштейна. Уже в 1801 году берлинскому астроному Иоганну Георгу фон Зольднеру удалось вычислить возможное преломление звездного света солнечной гравитацией (хотя, поскольку Зольднер использовал исключительно законы ньютоновской механики, его результат был ошибочным. Эйнштейн отметил: «Половина этого преломления вызвана ньютоновским полем притяжения Солнца, а вторая половина – геометрической трансформацией [искривлением] пространства, вызываемой Солнцем»{178}).
В 1912 году, еще до окончания последней версии общей теории относительности, Эйнштейн задумывался о возможности использования этого преломления в качестве линзы, подобно тому как стекла ваших очков преломляют свет перед тем, как он достигнет ваших глаз. В 1936 году чешский инженер Руди Мандл написал Эйнштейну письмо, в котором спрашивал, может ли гравитационная линза преломлять свет, исходящий от близлежащей звезды. Ответ был утвердительным, но уловить такое преломление не представлялось возможным из-за несовершенства технологий того времени.
В частности, Эйнштейн понял, что мы бы увидели оптические иллюзии, такие как двойные изображения самого объекта или кольцеобразное искажение света. Свет из очень далекой галактики, проходя, к примеру, мимо нашего Солнца, миновал его бы слева и справа, прежде чем лучи соединились бы снова и достигли наших глаз. Когда мы вглядываемся в далекие галактики, то наблюдаем кольцеобразные картины, оптические иллюзии, вызванные действием, которое объясняет общая теория относительности. Эйнштейн сделал вывод, что было «немного надежды на прямое наблюдение этого явления»{179}. В сущности, он написал о том, что эта работа «не имеет большой ценности, но доставляет радость бедняге [Мандлу]».
Больше чем через 40 лет, в 1979 году, Деннис Уолш из Обсерватории Джоделл-Бэнк получил первое частичное доказательство линзирования: он открыл двойной квазар Q0957+561{180}. В 1988 году кольцо Эйнштейна впервые наблюдалось из источника радиоизлучения MG1131+0456. В 1997 году космический телескоп «Хаббл» и сеть радиотелескопов MERLIN в Великобритании при изучении далекой галактики 1938+666 уловили первое кольцо Эйнштейна совершенно правильной формы, что в очередной раз подтвердило теорию великого ученого. (Это кольцо совсем крошечное, всего лишь в одну угловую секунду, то есть размером с маленькую монетку, наблюдаемую с расстояния в 3 км.) «Сначала кольцо выглядело довольно искусственно, и мы подумали, что это какой-то дефект изображения, но потом поняли, что перед нами кольцо Эйнштейна совершенно правильной формы!» – рассказывал Йен Браун из Манчестерского университета. Сегодня кольца Эйнштейна являются важным инструментом в арсенале астрофизиков{181}. В открытом космосе было обнаружено около 64 двойных, тройных и других кратных квазаров (миражей, вызванных гравитационным линзированием Эйнштейна), что приблизительно составляет пятисотую часть всех известных квазаров.
Даже такие невидимые формы материи, как темная, можно наблюдать при помощи создаваемого ими преломления света. Таким способом можно получить карты, на которых показано распределение темной материи во Вселенной. Поскольку гравитационное линзирование Эйнштейна преломляет свет больших галактических скоплений скорее в дуги (нежели в кольца), представляется возможным оценить концентрацию темной материи в этих скоплениях. В 1986 году астрономы Национальной обсерватории оптической астрономии Стэнфордского университета и Обсерватории Пик-дю-Миди во Франции наблюдали первые гигантские галактические дуги. С тех пор было обнаружено около сотни галактических дуг, наиболее впечатляющей из которых является Абель 2218{182}.
Линзы Эйнштейна можно также использовать в качестве объективного метода измерения количества МАСНО (массивные компактные объекты гало) во Вселенной (которые состоят из обычного вещества, такого, как мертвые звезды, коричневые карлики и пылевые облака). В 1986 году Богдан Пачински из Принстона понял, что в случае, если МАСНО проходят перед звездой, они тем самым увеличивают ее яркость и создают второе изображение.
В начале 1990-х годов несколько групп ученых (в частности, французская группа EROS, американо-австралийская группа MACHO и польско-американская группа OGLE) воспользовались этим методом для изучения центра галактики Млечный Путь и обнаружили более 500 микролинзовых событий (этот результат превзошел все ожидания, поскольку некоторое количество этого вещества состояло из звезд с малой массой и неистинных МАСНО). Этот же метод может применяться для обнаружения экстрасолнечных планет, вращающихся вокруг других звезд. Поскольку планета оказывала бы очень малое, но измеримое гравитационное воздействие на свет материнской звезды, линзирование Эйнштейна, в принципе, могло бы их обнаружить. При помощи этого метода уже было выявлено небольшое количество кандидатов в экстрасолнечные планеты, некоторые из них располагаются у центра Млечного Пути.
При помощи линз Эйнштейна можно измерить даже постоянную Хаббла и космологическую константу. Постоянная Хаббла измеряется путем тщательного наблюдения. Квазары становятся ярче и тускнеют с течением времени. Можно было бы ожидать, что двойные квазары, будучи изображениями одного и того же объекта, мерцали бы в унисон. Используя имеющиеся данные о распределении вещества во Вселенной, астрономы могут вычислить долю задержки во времени, потребовавшейся свету, чтобы достичь Земли. Измерив отставание во времени, когда двойные квазары становятся ярче, можно определить, на каком расстоянии от Земли они находятся. Зная же их красное смещение, можно вычислить постоянную Хаббла. (Именно такой метод был использован применительно к квазару Q0957+561, расстояние до которого оказалось равно приблизительно 14 млрд световых лет от Земли. С тех пор постоянная Хаббла была определена путем изучения семи других квазаров. В пределах погрешности полученные при таком изучении результаты совпали с уже имеющимися данными. Интересным отличием этого метода является то, что он совершенно не зависит от яркости звезд (таких как цефеиды и сверхновые типа Iа), что подчеркивает объективность полученных результатов.)
Этим способом можно измерить и космологическую константу, в которой, возможно, заключен ключ к будущему нашей Вселенной. Такой способ вычисления немного неточен, но, в принципе, результаты совпадают с данными, полученными при применении других методов. Поскольку миллиарды лет тому назад суммарный объем Вселенной был меньше, вероятность обнаружения квазаров, образующих линзу Эйнштейна, в прошлом также была большей. Таким образом, определив количество двойных квазаров на различных этапах эволюции Вселенной, можно вычислить приблизительный объем Вселенной, а отсюда – космологическую константу, которая определяет расширение Вселенной. В 1998 году астрономы из Гарвард-Смитсоновского центра астрофизики осуществили первое приблизительное вычисление космологической константы и пришли к выводу, что она, вероятно, составляет не более 62 % от суммарного содержимого вещества/энергии Вселенной{183}. (Действительный результат, полученный при помощи спутника WMAP, составляет 73 %[44].)
Темная материя у вас в гостиной
Если Вселенная заполнена темной материей, то она существует не только в холодном космическом вакууме. В сущности, темную материю можно также обнаружить и у вас в гостиной. Сегодня несколько исследовательских групп соревнуются за первенство в поимке частицы темной материи в лаборатории. Ставки высоки: ученые той группы, которой удастся поймать частицу темной материи, проносящуюся сквозь детектор, окажутся первыми, кто открыл новую форму материи за две тысячи лет.
Основная идея этих экспериментов заключается в следующем: необходим большой кусок чистого материала (такого как йодид натрия, оксид алюминия, фреон, германий или кремний), в котором может происходить взаимодействие частиц темной материи. Время от времени частица темной материи может сталкиваться с ядром атома, создавая характерную картину распада. Фотографируя следы частиц, участвующих в этом распаде, ученые смогут подтвердить присутствие темной материи.
Экспериментаторы полны сдержанного оптимизма, поскольку находящееся в их распоряжении чувствительное оборудование предоставляет им наилучшую возможность для наблюдения темной материи. Наша Солнечная система вращается по орбите вокруг черной дыры в центре галактики Млечный Путь со скоростью 220 км/с. В результате этого наша планета проходит сквозь значительное количество темной материи. Согласно расчетам физиков, миллиард частиц темной материи в секунду пролетает сквозь каждый квадратный метр нашего мира, в том числе сквозь наши тела{184}[45].
Хотя мы живем в ветре темной материи, дующем сквозь нашу Солнечную систему, лабораторные эксперименты по обнаружению темной материи чрезвычайно сложны из-за того, что частицы темной материи вступают в слишком слабое взаимодействие с обычным веществом. Так, ученые ожидают за год обнаружить от 0,01 до 10 событий, происходящих в килограмме материала, наблюдающегося в лаборатории[46]. Иными словами, пришлось бы многие годы внимательно наблюдать за большими количествами материала, чтобы увидеть события, имеющие отношение к темной материи.
До сих пор в ходе таких экспериментов, как UKDMC в Великобритании, ROSEBUD в Канфранке (Испания), SIMPLE в Рустреле (Франция) и Edelweiss в городе Фрежус (Франция), подобных событий обнаружено не было{185}. Эксперимент под названием DAMA (от dark matter – темная материя), проводившийся неподалеку от Рима, вызвал шумиху в 1999 году, когда ученые заявили, что наблюдали частицы темной материи. Поскольку в детекторе DAMA используется 100 кг йодида натрия, он является самым большим в мире. Однако попытки воспроизвести тот же результат при помощи других детекторов не увенчались успехом – не было обнаружено ничего; и это бросило тень сомнения на данные, полученные в ходе эксперимента DAMA.
Физик Дэвид Б. Клайн замечает: «Если детекторы уловят и подтвердят сигнал, то это станет одним из крупнейших достижений XXI столетия… Вскоре может разрешиться величайшая загадка современной астрофизики»{186}.
Если надежды физиков оправдаются и темная материя вскоре будет обнаружена, она может представить доказательство в пользу суперсимметрии (а вероятно, с течением времени и в пользу теории суперструн) без использования ускорителей частиц.
SUSY – суперсимметричная темная материя
Беглый взгляд на частицы, существование которых предсказывает суперсимметрия, показывает, что есть несколько потенциальных претендентов на объяснение тайны темной материи. Одним из них является нейтралино – семейство частиц, куда входит суперпартнер фотона. С теоретической точки зрения нейтралино, кажется, соответствует имеющимся данным. Нейтралино не только имеет нейтральный заряд, а потому невидимо, оно также массивно (а потому на него воздействует только гравитация), но, кроме того, оно стабильно. (Такая ситуация складывается потому, что нейтралино обладает наименьшей массой из всех частиц семейства, к которому оно принадлежит, а потому оно не может распадаться на какие-либо более легкие частицы). И наконец, последним и, вероятно, важнейшим моментом является то, что во Вселенной должно быть полно нейтралино, что делает их идеальными претендентами на роль темной материи.
У нейтралино есть одно веское преимущество: они, возможно, способны разрешить загадку, почему темная материя составляет 23 %[47] вещественно-энергетического содержимого Вселенной, в то время как водород и гелий отвечают лишь за какие-то жалкие 4 %.
Вспомним о том, что, когда Вселенной было 380 000 лет, температура продолжала снижаться до тех пор, пока атомы уже не разрывало на части при столкновениях, вызванных невероятным жаром Большого взрыва. В то время изначальный огненный шар начал остывать, конденсироваться и образовывать устойчивые целые атомы. Общее количество атомов восходит приблизительно к тому временному отрезку. Вывод таков: относительное содержание вещества во Вселенной складывалось в то время, когда Вселенная достаточно остыла, чтобы это вещество могло стать стабильным.
Этот же самый аргумент можно использовать при подсчете относительного содержания нейтралино. Сразу после Большого взрыва температура была настолько высока, что даже нейтралино уничтожались при столкновениях. Однако некоторое время спустя температура снизилась достаточно, чтобы стало возможным образование нейтралино без их последующего уничтожения. Относительное содержание нейтралино во Вселенной надо искать именно в той ранней эпохе. Осуществляя это вычисление, мы обнаруживаем, что относительное содержание нейтралино намного выше содержания атомов и, в сущности, приблизительно соответствует процентному содержанию темной материи в настоящее время. Таким образом, суперсимметричные частицы могут объяснить, почему настолько высоко относительное содержание темной материи во Вселенной.
Слоановский обзор неба
Хотя многие из достижений XXI столетия будут заключаться в усовершенствовании оборудования, такого как спутники, это вовсе не означает, что прекратятся работы с оптическими телескопами и радиотелескопами, базирующимися на Земле. В сущности, благодаря цифровому перевороту произошли изменения в использовании оптических телескопов и радиотелескопов; стал возможен статистический анализ сотен тысяч галактик. Сегодня благодаря этой новой технологии телескопы переживают второе рождение.
На протяжении всей истории астрономы воевали за то ограниченное время, которое им разрешалось проводить за наблюдениями у объективов величайших телескопов мира. Они ревностно отстаивали драгоценные часы, отведенные им на наблюдения, проводя долгие ночные часы за работой в холодных сырых помещениях. Этот устаревший способ наблюдения был чрезвычайно неэффективен и часто служил причиной ожесточенных споров среди астрономов, которые чувствовали себя ущемленными со стороны «верхушки», монополизировавшей время работы за телескопами. С появлением интернета и высокоскоростных компьютеров ситуация меняется.
Сегодня многие телескопы полностью автоматизированы; их работой могут управлять астрономы с различных континентов, находящиеся за тысячи миль от самих телескопов. Результаты этих сложных звездных обзоров могут быть оцифрованы и размещены в интернете, а полученные данные можно подвергнуть обработке с помощью суперкомпьютеров. Одним из примеров применения этого цифрового метода может служить SETI@home – проект, запущенный в Калифорнийском университете в Беркли и занимающийся изучением сигналов, несущих признаки внеземного разума. Большое количество данных, полученных радиотелескопом Аресибо в Пуэрто-Рико, разбивается на маленькие части и через интернет отсылается на персональные компьютеры по всему миру. Преимущественно эти данные попадают к любителям, непрофессионалам. Программа, выполненная в форме скринсейвера, анализирует данные на предмет сигналов внеземного разума в те моменты, когда компьютер не задействован пользователем. При помощи этого метода исследовательская группа создала величайшую компьютерную сеть в мире, связывающую около 5 млн персональных компьютеров во всех уголках земного шара.
Наиболее выдающимся примером современного исследования Вселенной при помощи цифровых технологий является Слоановский обзор неба – наиболее амбициозный из всех, когда-либо имевших место. Подобно проведенному ранее Паломарскому обзору неба, при котором использовались фотопластинки старого образца, хранившиеся в громоздких стопках, Слоановский обзор ставит целью создание точной карты небесных объектов. При помощи данного обзора удалось построить трехмерные карты далеких галактик в пяти цветах, включая красное смещение более миллиона галактик.
Результатом Слоановского обзора неба является крупномасштабная карта структур во Вселенной, в несколько сотен раз превосходящая все предыдущие. На ней будет в мельчайших деталях представлена четверть всего небосвода, а также определено положение и яркость 100 млн небесных объектов. Кроме того, в результате этого обзора будет определено расстояние до миллиона с лишним галактик и около 100 000 квазаров. Итоговое количество информации, выясненной в ходе Слоановского обзора неба, составит 15 Тбайт, что вполне может соперничать с количеством информации в Библиотеке Конгресса[48].
Сердцем Слоановского обзора является 2,5-метровый телескоп на юге штата Нью-Мексико, к которому подсоединена одна из лучших в мире камер. Прибор снабжен 30 чувствительными электронными световыми сенсорами – приборами с зарядовой связью – площадью около 13 см² каждый, помещенными в вакуум. Каждый сенсор охлажден до –80 °C при помощи жидкого азота и содержит 4 млн пикселей. Таким образом, весь свет, улавливаемый телескопом, может быть немедленно оцифрован, после чего данные доступны для компьютерной обработки. Стоимость проекта – менее 20 млн долларов, что в сто раз меньше стоимости проекта телескопа «Хаббл», но тем не менее при помощи такого обзора создается потрясающая картина Вселенной.
Итак, некоторые из оцифрованных данных выкладываются в интернет с тем, чтобы астрономы по всему миру могли изучить их. Таким образом можно задействовать интеллектуальный потенциал ученых всего мира. Слишком часто в прошлом у исследователей из стран третьего мира не было доступа к последним научным журналам и самым свежим данным, полученным при помощи телескопов. Сегодня благодаря интернету эти ученые могут загружать данные обзоров неба, читать статьи по мере их появления в сети, а также публиковать свои статьи и распространять их со скоростью света.
Слоановский обзор уже меняет методы астрономических исследований. Полученные при помощи обзора результаты основаны на анализе сотен тысяч галактик, что было совершенно немыслимо всего лишь несколько лет назад. К примеру, в мае 2003 года команда ученых из Испании, Германии и Соединенных Штатов заявила, что они изучили 250 000 галактик на предмет доказательства существования темной материи. Из этого огромного количества они выбрали 3000 галактик, вокруг которых вращаются звездные скопления. Применив законы механики Ньютона для изучения движения этих спутников, они рассчитали количество темной материи, которое должно окружать центральную галактику. Уже одним этим они опровергли альтернативную теорию (последняя была впервые предложена в 1983 году; она пыталась объяснить звездные орбиты неправильной формы в галактиках путем корректировки самих законов Ньютона: возможно, темной материи нет вообще; возможно, своим предполагаемым существованием она обязана всего лишь ошибке в законах Ньютона. Данные обзора ставят эту теорию под сомнение).
В июле 2003 года еще одна команда ученых из Германии и Соединенных Штатов заявила, что они изучили 120 000 близлежащих галактик, используя Слоановский обзор для раскрытия отношений между галактиками и черными дырами, находящимися в них. Вопрос заключается в следующем: что возникло раньше – черная дыра или галактика, в которой эта черная дыра находится? Результат проведенного исследования показывает, что образование галактик и черных дыр тесно связано и, вероятно, они образовались вместе. Исследование продемонстрировало, что из 120 000 изученных в ходе обзора галактик 20 000 содержат черные дыры, которые продолжают расти (в отличие от черной дыры в галактике Млечный Путь, которая, кажется, находится в состоянии покоя). Полученные результаты показывают, что галактики, содержащие черные дыры, которые все еще растут в размерах, намного больше галактики Млечный Путь, а расширяются они путем поглощения относительно холодного газа из галактики.
Компенсация температурных флуктуаций
Еще одним способом возрождения оптических телескопов является использование лазеров для компенсации атмосферного искажения. Звезды мерцают не потому, что они вибрируют, они мерцают главным образом из-за очень малых температурных флуктуаций в атмосфере. Это означает, что в открытом космосе, вдали от нашей атмосферы, астронавты видят звезды, сияющие ровным, неизменным светом. Хотя красота ночного неба в большой степени связана с мерцанием звезд, для астрономов это просто кошмар: из-за этого явления снимки небесных тел получаются расплывчатыми (Я помню, как в детстве смотрел на размытые изображения Марса и мне очень хотелось каким-нибудь образом получить очень четкие снимки Красной планеты. «Если бы только можно было исключить возмущения атмосферы путем перенаправления световых лучей, – думал я, – то, возможно, разрешилась бы загадка о существовании внеземной жизни».)
Одним из способов компенсировать размытость является использование лазеров и высокоскоростных компьютеров для того, чтобы свести на нет это искажение. В этом методе применяется «адаптивная оптика», которую впервые задействовала моя однокурсница по Гарварду Клер Макс из Ливерморской национальной лаборатории имени Лоуренса, а также другие ученые, использовавшие телескоп имени Уильяма Майрона Кека на Гавайях (самый большой в мире), а также меньший трехметровый телескоп Шейна в Ликской обсерватории в Калифорнии. Пустив, например, лазерный луч в открытый космос, можно измерить очень малые температурные флуктуации в атмосфере. Эта информация анализируется при помощи компьютера, который затем несколько корректирует положение зеркала телескопа, что позволяет компенсировать это искажение звездного света. Таким путем можно в значительной мере исключить возмущения атмосферы.
Этот метод был с успехом опробован в 1996 году, и с тех пор с его помощью удается получать исключительно четкие изображения планет, звезд и галактик. Система пускает в небо свет из настраиваемого лазера на красителях мощностью 18 Вт. Лазер крепится к трехметровому телескопу, деформируемые зеркала которого настраиваются для компенсации атмосферных искажений. Само изображение улавливается камерой светового сенсора и оцифровывается. При весьма скромном бюджете эта система позволяет получать изображения, четкость которых почти не уступает изображениям с космического телескопа «Хаббл». При помощи этого метода астрономы получают снимки, на которых можно различить мелкие детали внешних планет и даже вглядеться в самое сердце квазара, что дает новую жизнь технологии оптических телескопов.
Этот метод позволил увеличить разрешение телескопа Кека в десять раз. Обсерватория имени Кека расположена на вершине гавайского спящего вулкана Мауна-Кеа, на высоте 4201 м над уровнем моря, и состоит из двух телескопов-близнецов, каждый из которых весит 270 т. Зеркала имеют диаметр 10 м и состоят из 36 шестиугольников, положение каждого из которых можно непосредственно регулировать при помощи компьютера. В 1999 году система адаптивной оптики была встроена в телескоп Кека II. Система состоит из маленького деформируемого зеркала, которое может менять форму 670 раз в секунду. При помощи этой системы уже удалось сделать снимки звезд, вращающихся вокруг черной дыры в центре нашей галактики Млечный Путь, снимки поверхности Нептуна и Титана (луны Сатурна) и даже одной экстрасолнечной планеты, которая затмила свою материнскую звезду на расстоянии 153 световых года от Земли. Свет звезды HD 209458 тускнел в точном соответствии с прогнозами по мере прохождения планеты перед материнской звездой.
Соединение радиотелескопов
Компьютерная революция возродила также и радиотелескопы. В прошлом возможности радиотелескопов ограничивались размерами их тарелки. Чем больше была тарелка, тем большее количество радиосигналов из космоса можно было уловить и проанализировать. Однако чем больше тарелка, тем она дороже. Одним из способов решения этой проблемы является соединение нескольких тарелок для того, чтобы получить потенциал улавливания радиосигналов сверхмощного радиотелескопа. (Самым большим радиотелескопом, который можно собрать на Земле, стал бы радиотелескоп размером с саму Землю.) Предыдущие попытки связывания радиотелескопов в Германии, Италии и Соединенных Штатах удались только частично.
Одна из проблем такого метода заключается в том, что сигналы, получаемые с различных радиотелескопов, необходимо четко скомбинировать и затем заложить в компьютер. В прошлом эта задача представлялась невыполнимой. Однако появление интернета и дешевых высокоскоростных компьютеров позволило существенно снизить затраты. В настоящее время создание радиотелескопов с действительным размером порядка самой планеты Земля уже не является фантастикой[49].
В Соединенных Штатах самым лучшим аппаратом, в котором применяется интерференционная технология, является сверхдальняя антенная решетка (VLBA), которая представляет собой сеть из десяти радиоантенн, расположенных в различных точках: в штатах Нью-Мексико, Аризона, Нью-Гемпшир, Вашингтон, Техас, на Виргинских островах и на Гавайях. Каждая установка решетки VLBA снабжена огромной тарелкой диаметром около 25 м, которая весит 240 т и расположена на высоте десятиэтажного здания. На каждой установке радиосигналы скрупулезно записываются на пленку и отправляются в Операционный центр в Сокорро (штат Нью-Мексико), где эти сигналы коррелируются и анализируются. Система была запущена в 1993 году, а стоимость ее составила 85 млн долларов.
С помощью корреляции данных с этих десяти установок мы получаем эффективный гигантский телескоп, размеры которого достигают 8000 км в ширину и который позволяет получать точнейшие изображения на Земле. Для сравнения можно представить, что вы находитесь в Нью-Йорке и читаете газету, которая сейчас в Лос-Анджелесе. При помощи решетки VLBA уже удалось заснять космические струи и взрывы сверхновых, а также осуществить точнейшие из когда-либо сделанных измерения расстояний до объекта, находящегося за пределами галактики Млечный Путь.
В будущем даже в оптических телескопах можно будет использовать силу интерферометрии, хотя это представляется довольно сложным, учитывая короткую длину волны света. Существует проект, предполагающий сведение оптических данных с двух телескопов в Обсерватории имени Кека на Гавайях, что позволит создать гигантский телескоп намного большего размера, чем представляет собой каждый из них в отдельности.
Измеряем одиннадцатое измерение
Наряду с поисками темной материи и черных дыр одной из самых интригующих для физиков является загадка дополнительных высших измерений пространства и времени. Одна из наиболее смелых попыток подтверждения существования близлежащей вселенной была совершена в Университете Колорадо (город Боулдер). Ученые этого университета попытались измерить отклонения от знаменитого закона обратных квадратов Ньютона.
Согласно теории гравитации Ньютона сила притяжения между любыми двумя телами уменьшается обратно пропорционально квадрату расстояния, разделяющего их. Если мы удвоим расстояние от Земли до Солнца, то сила гравитации снизится в два в квадрате, то есть в четыре раза. Этот результат, в свою очередь, указывает на количество измерений пространства.
До сих пор закон гравитации Ньютона остается верным применительно к космическим расстояниям с большими галактическими скоплениями. Но еще никто не совершил адекватной проверки закона гравитации Ньютона для чрезвычайно малых расстояний – это представлялось чрезвычайно трудным. Поскольку гравитация – взаимодействие чрезвычайно слабое, малейшее возмущение может разрушить весь эксперимент. Даже проезжающие мимо машины создают достаточно сильные вибрации, чтобы загубить эксперименты, в ходе которых измеряется гравитационное взаимодействие между малыми объектами.
Физики в Колорадо сконструировали чувствительный прибор под названием высокочастотный резонатор, который был способен проверить закон гравитации на расстояниях до 0,1 мм. Впервые такие испытания совершались на столь малых расстояниях. Эксперимент проводился с использованием двух тончайших вольфрамовых пластинок, помещенных в вакуум. Одна из пластинок вибрировала с частотой 1000 циклов в секунду, несколько напоминая трамплин после прыжка. Затем физики начали поиски всех вибраций, передаваемых сквозь вакуум второй пластинке.
Чувствительность аппарата была настолько велика, что он мог определить движение второй пластинки, вызванное одной миллионной долей веса песчинки. Если и вправду существовало отклонение от закона Ньютона, то должно было быть зафиксировано едва уловимое движение второй пластинки. Однако, проведя эксперимент при расстояниях до 108 миллионных долей метра, физики не обнаружили такого отклонения. «Пока Ньютон еще держит свои позиции»{187}, – заключил Ч. Хойл из Университета Тренто в Италии, который проводил анализ данного эксперимента для журнала Nature.
Итак, полученный результат оказался отрицательным, но он лишь раздразнил аппетит других физиков, которые хотят проверить закон Ньютона на предмет отклонения при расстояниях микроскопического масштаба.
Проведение еще одного эксперимента планируется в Университете Пердью. Там физики хотят измерить крошечные отклонения от закона Ньютона не на миллиметровом уровне, а в масштабах атома. Они рассчитывают провести такой эксперимент, используя нанотехнологию для измерения разницы между никелем-58 и никелем-64. Эти два изотопа обладают одинаковыми электрическими и химическими свойствами, но у одного изотопа на шесть нейтронов больше, чем у второго. В принципе, единственное, в чем различны эти изотопы, – это их вес.
Ученые планируют создать устройство Казимира, состоящее из двух наборов пластинок с нейтральным зарядом, сделанных из этих двух изотопов. Обычно, когда эти пластинки располагают близко друг к другу, ничего не происходит, поскольку они не имеют заряда. Но если их расположить чрезвычайно близко друг к другу, то имеет место эффект Казимира: пластинки слегка притягиваются друг к другу; этот эффект был измерен в лаборатории. И поскольку наборы параллельных пластинок сделаны из двух различных изотопов, они будут притягиваться друг к другу с несколько различной силой.
Для того чтобы максимально увеличить эффект Казимира, пластинки должны располагаться очень близко друг к другу. (Этот эффект обратно пропорционален четвертой степени расстояния. Отсюда следует, что сила эффекта стремительно увеличивается при сближении пластинок.) Физики Университета Пердью воспользуются нанотехнологией для того, чтобы расстояние между пластинками было сравнимо с размерами атома. Ученые используют новейшие микроэлектромеханические торсионные генераторы для измерения крошечных колебаний пластинок. Тогда любое различие между пластинками из никеля-58 и никеля-64 можно приписать действию гравитации. Таким образом, ученые надеются измерить отклонения от законов механики Ньютона на атомарных расстояниях[50]. Если при помощи этого гениального устройства им удастся обнаружить отклонения от знаменитого закона обратных квадратов, это может сигнализировать о присутствии вселенной, существующей в дополнительных, более высоких измерениях, которая находится на расстоянии атома от нашей Вселенной.
Большой адронный коллайдер
И все же устройством, которое окончательно решит многие из упомянутых вопросов, является Большой адронный коллайдер, строительство которого близится к завершению возле Женевы в Швейцарии в знаменитой ядерной лаборатории ЦЕРН (Европейской организации по ядерным исследованиям)[51]. В отличие от предыдущих экспериментов по обнаружению незнакомых форм материи, в естественном виде существующей в мире, Большой адронный коллайдер, возможно, будет обладать достаточной энергией, чтобы создать эти формы материи прямо в лаборатории. При помощи Большого адронного коллайдера можно будет исследовать малые расстояния до 10–19 м, что в 10 000 раз меньше протона, а также создавать температуры, невиданные со времен Большого взрыва. «Физики уверены, что у природы припасены новые фокусы, которые могут обнаружиться в ходе этих столкновений, – возможно, это будет экзотическая частица, известная под названием бозон Хиггса[52], возможно, доказательство такого чудесного явления, как суперсимметрия, а возможно, обнаружится что-либо неожиданное и поставит с ног на голову всю физику»{188}, – пишет Крис Ллевеллин Смит, бывший генеральный директор ЦЕРН, а теперь президент Университетского колледжа в Лондоне. Уже сейчас оборудованием ЦЕРН пользуются около 7000 специалистов, а это более половины всех физиков планеты, экспериментирующих с частицами. И многие из них будут самым непосредственным образом участвовать в экспериментах, проводимых при помощи Большого адронного коллайдера.
Большой адронный коллайдер представляет собой мощную конструкцию в виде кольца диаметром 27 км. Размеры этого кольца достаточно велики, чтобы окружить многие города мира. Туннель коллайдера такой длинный, что он фактически пересекает границу между Францией и Швейцарией. Большой адронный коллайдер представляет собой настолько дорогостоящее устройство, что при его строительстве потребовались совместные усилия нескольких европейских стран. После запуска коллайдера в 2007 году мощные магниты, расположенные вдоль всего кругового туннеля, заставят пучок протонов циркулировать со все возрастающей энергией до тех пор, пока она не приблизится к 14 трлн эВ.
По мере прохождения частиц по кругу в туннель подается энергия, увеличивая скорость протонов. Когда пучок в конце концов попадает в цель, происходит колоссальный выброс излучения[53]. Следы, образовавшиеся в результате этого столкновения, фотографируют при помощи группы детекторов с целью обнаружения новых экзотических субатомных частиц.
Большой адронный коллайдер – это поистине гигантское устройство. В то время как детекторы LIGO и LISA бьют все рекорды в плане чувствительности, Большой адронный коллайдер уникален уже благодаря своей колоссальной мощности. Его магниты, искривляющие пучок протонов в изящную дугу, генерируют поле в 8,3 теслы, которое в 160 000 раз сильнее магнитного поля Земли. Для создания такого чудовищного по силе поля физики пропускают ток силой 12 000 А по ряду витков, охлажденных до температуры в –271 °С, при которой витки теряют сопротивление и становятся сверхпроводниками. В целом на Большом адронном коллайдере установлено 1232 магнита, каждый из которых имеет 15 м в длину. Таким образом, магниты расположены вдоль 85 % всей окружности коллайдера.
В туннеле протоны к моменту удара по цели ускоряются до скорости, равной 99,999999 % скорости света. Цели находятся в четырех местах по всей длине туннеля. Таким образом, каждую секунду происходят миллиарды столкновений. Там же расположены гигантские детекторы (каждый из которых размером с семиэтажный дом), задачей которых является анализ следов столкновения и обнаружение неуловимых субатомных частиц.
Как было ранее замечено Смитом, в задачи Большого адронного коллайдера входит обнаружение неуловимого бозона Хиггса, представляющего собой последний элемент Стандартной модели, который до сих пор не удавалось обнаружить. Эта задача имеет большое значение, поскольку эта частица отвечает за спонтанное нарушение симметрии в теориях частиц и дает начало массам квантового мира. По предварительным оценкам, масса бозона Хиггса может быть 115–200 млрд эВ[54] (для сравнения: масса протона около 1 млрд эВ){189}. (Теватрон, устройство гораздо меньших размеров, размещенное в Лаборатории Ферми на окраине Чикаго, станет, возможно, первым ускорителем, при помощи которого удастся заполучить неуловимый бозон Хиггса, при условии что масса этой частицы не слишком велика. В принципе, Теватрон может произвести до 10 000 бозонов Хиггса, если все будет идти, как запланировано. Однако энергия генерирования частиц Большого адронного коллайдера будет в семь раз больше. При 14 трлн эВ Большой адронный коллайдер вполне сможет стать «фабрикой» бозонов Хиггса, миллионы которых будут создаваться при столкновениях протонов.)
В задачи Большого адронного коллайдера входит также создание условий, невиданных со времен самого Большого взрыва. В частности, физики полагают, что изначально Большой взрыв состоял из хаотичного скопления чрезвычайно горячих кварков и глюонов, называемого кварк-глюонной плазмой. Большой адронный коллайдер сможет произвести такую кварк-глюонную плазму, которая преобладала во Вселенной в первые 10 мкс ее существования. В Большом адронном коллайдере можно будет столкнуть ядра свинца при энергии 1,1 трлн эВ. В ходе такого мощного столкновения могут «расплавиться» четыре сотни протонов и нейтронов, которые высвободят кварки в эту горячую плазму[55]. Таким образом, космология постепенно сможет стать в меньшей степени наукой, основанной на астрономических наблюдениях, и точные эксперименты на кварк-глюонной плазме будут ставиться прямо в лабораториях.
Можно надеяться, что при помощи Большого адронного коллайдера удастся обнаружить черные мини-дыры среди остатков, образовавшихся в результате столкновения протонов при фантастически высоких энергиях, как уже было упомянуто в главе 7[56]. Обычно образование квантовых черных дыр должно происходить при энергии Планка, что в квадриллион раз превышает энергию Большого адронного коллайдера. Но если в миллиметре от нашей Вселенной существует параллельная вселенная, то энергия, при которой возможно измерение квантовых гравитационных эффектов, снижается, благодаря чему создание черных мини-дыр оказывается в пределах возможностей Большого адронного коллайдера.
И наконец, ученые возлагают надежды на то, что при помощи Большого адронного коллайдера удастся найти подтверждение суперсимметрии, что стало бы историческим прорывом в физике частиц. Считается, что эти суперпартнеры являются партнерами обычных частиц, которые мы можем наблюдать в природе. Хотя струнная теория и суперсимметрия и предсказывают, что у каждой субатомной частицы есть «близнец» с отличающимся спином, суперсимметрия никогда не наблюдалась в природе, вероятно, потому, что наши приборы не обладают достаточной мощностью для ее обнаружения.
Подтверждение существования суперчастиц помогло бы дать ответ на два наболевших вопроса. Во-первых, верна ли струнная теория? Несмотря на то что обнаружить струны прямым путем чрезвычайно сложно, может оказаться возможным обнаружить нижние октавы или резонансы струнной теории. Если будут открыты суперчастицы, это станет большим сдвигом в струнной теории, обеспечивая ее экспериментальное подтверждение (хотя все же это не будет прямым доказательством ее истинности).
Во-вторых, это предоставило бы наиболее вероятного претендента на роль темной материи. Если темная материя состоит из субатомных частиц, то они должны обладать стабильностью и нейтральным зарядом (иначе они были бы видимы), а также между ними должно быть гравитационное взаимодействие. Среди частиц, предсказываемых струнной теорией, встречаются и обладающие этими тремя качествами.
Когда будет запущен Большой адронный коллайдер, он станет самым мощным ускорителем частиц. И все же для большинства физиков это не предел мечтаний. В 1980-е годы президент Рональд Рейган одобрил проект постройки Сверхпроводящего суперколлайдера (SSC) – гигантской конструкции, достигающей 80 км в окружности. Строительство этого ускорителя частиц планировалось возле Далласа (штат Техас). По сравнению с Суперколлайдером Большой адронный коллайдер показался бы просто крошкой. В то время как Большой адронный коллайдер позволяет сталкивать частицы с энергией 14 трлн эВ, по проекту Суперколлайдер должен был обеспечить столкновения частиц с энергией 40 трлн эВ. Первоначально проект получил одобрение, но в последние дни слушаний Конгресс Соединенных Штатов внезапно отклонил его. Это стало тяжелым ударом по физике высоких энергий и задержало развитие этой области на целое поколение.
Поначалу предметом спора являлись стоимость проекта, составляющая 11 млрд долларов, и научные приоритеты. Мнения представителей научного сообщества по поводу Сверхпроводящего суперколлайдера разделились: некоторые физики заявляли, что проект выкачает средства, которые могли бы пойти на их собственные исследования. Спор разгорелся настолько, что даже The New York Times опубликовала критическую редакционную статью, где говорилось об опасностях «большой науки», которая может задушить «малую науку». (Эти аргументы беспочвенны, поскольку средства на строительство Сверхпроводящего суперколлайдера должны были поступать из других источников, а не из бюджета «малой науки». Реальным соперником проекта была космическая станция, которая многими учеными рассматривалась поистине как пустая трата денег.)
Но, оглядываясь назад, можно сказать, что суть спора сводилась к умению говорить с широкой общественностью на доступном языке. В некотором смысле мир физики привык к тому, что строительство чудовищных ускорителей частиц получало одобрение со стороны Конгресса, поскольку русские строили свои ускорители. В сущности, русские строили свой ускоритель УНК (Ускорительно-накопительное кольцо. – Прим. пер.), соревнуясь со Сверхпроводящим суперколлайдером[57]. На карту были поставлены честь и престиж нации. Но Советский Союз распался, строительство было остановлено, и постепенно ветер перестал надувать паруса программы постройки Сверхпроводящего суперколлайдера{190}.
Настольные ускорители частиц
С появлением Большого адронного коллайдера физики постепенно приближаются к верхнему пределу энергии, которую можно получить при помощи современного поколения ускорителей частиц. Стоимость этих ускорителей исчисляется десятками миллиардов долларов, а по размеру они превосходят многие большие современные города. Они настолько грандиозны, что их строительство возможно лишь при совместных усилиях нескольких государств. Если мы хотим преодолеть барьер, ограничивающий возможности традиционных ускорителей, то нам необходимы принципиально новые идеи и подходы. Святой Грааль для физиков, занимающихся частицами, – это создание «настольного» ускорителя частиц, который сможет создать пучки с энергией в миллиарды электронвольт, существенно экономя на размерах и стоимости по сравнению с традиционными ускорителями.
Чтобы понять, в чем заключается проблема, представьте себе эстафету, участники которой расставлены по кругу вдоль длинной беговой дорожки. Соревнуясь в беге, участники передают друг другу палочку. Теперь представьте, что каждый раз, когда палочка переходит от одного бегуна к другому, участникам сообщается дополнительная энергия, то есть они начинают бежать все быстрее и быстрее.
Нечто похожее наблюдается в ускорителе частиц, где роль палочки выполняет пучок субатомных частиц, которые двигаются по кругу. Каждый раз, когда пучок переходит от одного участника к другому, в пучок инжектируется высокочастотная энергия, все больше и больше разгоняя его. По такому принципу строились ускорители частиц на протяжении последних пятидесяти лет. Проблема традиционных ускорителей частиц состоит в том, что мы подходим к пределу высокочастотной энергии, которую можно использовать для приведения ускорителя частиц в действие.
Для решения этой досадной проблемы ученые экспериментируют с кардинально новыми способами закачки энергии в пучок: например, с использованием мощных лазерных лучей, мощность которых экспоненциально растет. Одним из преимуществ лазерного света является его когерентность, то есть все световые волны вибрируют точно в унисон, благодаря чему возможно создание невероятно мощных лучей. Сегодня лазерные лучи могут генерировать мощный энергетический импульс в триллионы ватт мощности за короткий промежуток времени. (Для сравнения: атомная электростанция способна генерировать какой-то несчастный миллиард ватт, но она постоянна.) В настоящее время становится возможным использование лазеров, которые могут генерировать до тысячи триллионов ватт.
Лазерные ускорители частиц работают по следующему принципу. Лазерный свет достаточно горяч, чтобы создать газ из плазмы (скопления ионизированных атомов), который затем движется с волнообразными колебаниями на высоких скоростях, подобно приливной волне. Затем пучок субатомных частиц ловит эту попутную волну плазмы. При инжектировании большего количества лазерной энергии движение волны плазмы ускоряется, сообщая дополнительную энергию пучку частиц на этой волне. Недавно ученым из Лаборатории Резерфорда – Эпплтона в Англии удалось, направив лазерный луч в 50 ТВт на твердую цель, произвести пучок протонов, несущий до 400 МэВ энергии в коллимированном пучке. Физики из Парижской политехнической школы разогнали электроны до 200 МэВ на расстоянии 1 мм.
Созданные на данный момент лазерные ускорители частиц отличаются малыми размерами и небольшой мощностью. Но представим на секунду, что масштабы такого ускорителя частиц можно увеличить таким образом, чтобы он работал на расстоянии не миллиметра, а целого метра. Тогда он мог бы разогнать электроны до 200 ГэВ на расстоянии одного метра; тем самым была бы достигнута цель создания настольного ускорителя частиц. Еще одним важным этапом стало ускорение электронов на расстоянии 1,4 м физиками из Стэнфордского центра линейного ускорителя в 2001 году. Вместо лазерного луча они создали плазменную волну путем инжектирования пучка заряженных частиц. Хотя полученная ими энергия была достаточно низкой, этот опыт продемонстрировал, что плазменные волны могут ускорять частицы на расстоянии метра.
Темпы исследований в этой перспективной области очень высоки: энергия, достигаемая при помощи этих ускорителей, возрастает в 10 раз каждые пять лет. При таком развитии событий уже не за горами создание прототипа настольного ускорителя частиц. Если это предприятие окажется успешным, то Большой адронный коллайдер будет смотреться как последний динозавр. Какой бы перспективной ни казалась эта затея, на пути ее реализации стоит множество преград. Подобно серфингисту, которому сложно не упасть, катаясь на предательской волне, очень сложно поддержать пучок так, чтобы он должным образом «ехал» на плазменной волне (в число проблем входит фокусировка пучка и поддержание его стабильности и интенсивности). Однако ни одна из этих проблем не представляется непреодолимой.
Будущее
Есть несколько задумок для доказательства струнной теории. Эдвард Виттен выражает надежду на то, что в момент Большого взрыва Вселенная расширялась столь стремительно, что, возможно, вместе с ней растянулась и струна, в результате чего в космосе образовалась струна астрономических размеров. Он размышляет: «Несмотря на то что это звучит несколько нереально, это мой любимый сценарий доказательства струнной теории, поскольку ничто не решит вопрос настолько радикально, как наблюдение струны в телескоп»{191}.
Брайан Грин перечисляет пять вероятных примеров экспериментальных данных, которые могли бы подтвердить струнную теорию или по крайней мере придать ей правдоподобие:
1. Крошечная масса неуловимого призрачного нейтралино может быть определена экспериментальным путем, и струнная теория могла бы объяснить ее.
2. Могут быть обнаружены незначительные нарушения Стандартной модели, которые противоречат физике точечных частиц, такие как распад определенных субатомных частиц.
3. Экспериментальным путем могут быть обнаружены новые силы дальнего действия (помимо гравитации и электромагнетизма), которые будут сигналом в пользу выбора определенного многообразия Калаби – Яу.
4. В лаборатории могут быть обнаружены частицы темной материи. Их можно будет сопоставить с прогнозами струнной теории.
5. Струнная теория могла бы вычислить количество темной материи во Вселенной{192}.
Моя собственная точка зрения состоит в том, что верификация струнной теории может осуществиться скорее благодаря чистейшей математике, нежели экспериментальным путем. Поскольку предполагается, что струнная теория – это теория всего, она должна быть также теорией повседневных энергий, равно как и космических. Таким образом, если мы в конце концов найдем этой теории, то, вероятно, сможем вычислить свойства обычных объектов, а не только экзотических, которые обнаруживаются в открытом космосе. Для примера: если струнная теория сможет вычислить массы протона, нейтрона и электрона исходя из первых принципов, то это стало бы достижением первой величины. Во всех физических моделях (за исключением струнной теории) массы этих известных частиц подставляются вручную. В некотором смысле нам не нужен Большой адронный коллайдер для подтверждения этой теории, поскольку мы уже знаем массы огромного количества субатомных частиц, и все они должны быть определены струнной теорией без всяких настраиваемых параметров.
Как сказал Эйнштейн: «Я убежден, что посредством чисто математических построений мы можем определить концепции и законы… которые дадут нам ключ к пониманию естественных явлений. Опыт может подсказать нам нужные математические концепции, но они не могут быть выведены из него… Таким образом, в некотором смысле я верю в то, что чистая мысль может охватить реальность, о чем мечтали древние»{193}.
Если М-теория (или любая другая теория, которая в конечном счете приведет нас к квантовой теории гравитации) окажется верной, то она сделает возможным последнее путешествие для всей разумной жизни во Вселенной – побег из нашей умирающей Вселенной в новый дом через триллионы и триллионы лет.