если B ≥ W, то B является надмножеством W;
если B ≤ W, то B является подмножеством W.
Числовые множестваМы рассмотрели несметные множества бесконечно маленьких точек. Но компьютеры ещё не умеют работать с бесконечностями. Так умерим свой аппетит и перейдем к множествам с конечным числом элементов. Поступим так: вместо раскраски кругов расставим на них ряд жирных точек и пронумеруем их числами от 1 до 9 (рис. 86). В ходе последующих опытов нас будут интересовать лишь эти избранные точки (то есть, числа).
Рис.86 – Множества чиселТак мы получили два конечных множества чисел. Одно из них, обозначенное буквой A, содержит числа 8, 7, 9, 3, 5, 2. Другое обозначено буквой B и включает числа 5, 4, 6, 1, 2. Эти множества математики записали бы так:
A = { 8, 7, 9, 3, 5, 2 }
B = { 5, 4, 6, 1, 2 }
Для записи множеств они используют фигурные скобки. Обратите внимание: числа в скобках следуют в произвольном порядке. Это значит, что порядок перечисления элементов множества не важен. Учтите также, что числа 2 и 5 входят в оба множества.
Подобно точкам на круге, каждый элемент числового множества уникален, иными словами, может входить в множество лишь единожды. Вспомните нашу попытку покрасить углем черный круг, – добавление к множеству существующих в нём элементов не изменяет его. Этим же свойством обладают и числовые множества. Например, для нашего случая справедливо следующее.
A + { 8, 7 } = A
Множество A после объединения с множеством {8,7} не изменилось, поскольку уже содержало эти числа.
С числовыми множествами поступают так же, как и с бесконечными: объединяют, пересекают, вычитают и сравнивают. Вот примеры этих операций для нашего случая.
Объединение множеств содержит все числа исходных множеств, при этом повторения (дубликаты) отбрасывают:
G = A + B = { 8, 7, 9, 3, 5, 2 } + { 5, 4, 6, 1, 2 } = { 8, 7, 9, 3, 5, 2, 4, 6, 1 }
Хотя числа 2 и 5 входили в оба исходных множества, в объединении они встречаются по разу.
Пересечение множеств содержит только числа, входящие в оба множества:
A * B = { 8, 7, 9, 3, 5, 2 } * { 5, 4, 6, 1, 2 } = { 5, 2 }
Разность множеств A–B содержит числа, состоящие в множестве A, но отсутствующие в множестве B:
A – B = { 8, 7, 9, 3, 5, 2 } – { 5, 4, 6, 1, 2 } = { 8, 7, 9, 3 }
Разность множеств B–A содержит числа, состоящие в множестве B, но отсутствующие в множестве A:
B – A = { 5, 4, 6, 1, 2 } – { 8, 7, 9, 3, 5, 2 } = { 4, 6, 1 }
Эти «вычисления» легко проверить по рис. 86.
Мощность множества, полные и неполные множестваМощность множества – это наибольшее количество элементов, которое может содержаться в нём. В нашем числовом примере мощность множества равна девяти.
Множество, содержащее все возможные свои элементы, называют полным. В нашем случае полным является объединение множеств A+B.
Множество, содержащее не все возможные элементы, является неполным. Так, множества A и B по отдельности – неполные.
Все это рассказал нам математик. А что же Семен Семенович, или мы забыли о директоре? Нет, конечно, но к директорской задаче мы вернемся после ознакомления с «паскалевскими» множествами.
Итоги• Множество – это совокупность различимых объектов (точек, чисел, предметов), которую мы воспринимаем как нечто целое. Отдельные объекты множества называют его элементами.
• К множествам применим ряд операций: объединение, пересечение, вычитание, сравнение.
• Объединение двух множеств содержит по одному элементу из каждого исходного множества.
• Пересечение двух множеств содержит только общие их элементы. Если таких элементов нет, пересечение будет пустым.
• Разность множеств содержит элементы уменьшаемого множества за исключением элементов вычитаемого множества.
• Первое множество является подмножеством второго, если все элементы первого принадлежат второму. И тогда второе множество будет надмножеством первого. Множества совпадают, если содержат одни и те же элементы.
А слабо?А) Полицейская база данных некоторого государства содержит номера всех автомобилей, сгруппированные в ряд множеств. Три множества составлены по типам автомобилей: легковые, грузовые, автобусы. Шесть множеств образованы по цвету автомобилей: множества белых, черных, желтых, красных, синих и зеленых.
• Пересекается ли множество легковых автомобилей с множеством грузовых? А множество желтых автомобилей с множеством черных?
• Может ли быть непустым пересечение множества желтых автомобилей с множеством автобусов?
• Свидетель дорожно-транспортного происшествия сообщил, что с места преступления скрылся грузовой автомобиль синего цвета. Как вычислить группу подозреваемых автомобилей?
• На улице висит знак: грузовым проезд запрещен. Как определить множество автомобилей, въезд которым разрешен?
Б) Два государства, назовем их A и B, спорят о некой территории, – каждое считает ее своей. Нарисуйте на листочке предполагаемую карту, заштрихуйте спорную область, а затем объясните:
• Как вычислить спорную область государств?
• Как вычислить бесспорную область, включая оба государства?
• Заштрихуйте область, отвечающую формуле G = (A-B) + (B-A).
• Заштрихуйте область, отвечающую формуле G = A+B – A•B. Совпадает ли она с той, что вычислена по предыдущей формуле?
В) Дайте ответы на следующие вопросы.
• Является ли множество ваших одноклассников подмножеством учеников вашей школы?
• Пересекается ли множество ваших друзей с множеством ваших одноклассников?
• Является ли множество ваших друзей подмножеством ваших одноклассников?
Глава 36Множества в Паскале
Зная силу математических множеств, Никлаус Вирт – «отец» языка Паскаль – ввел в язык тип данных множество и предусмотрел операции с ним.
Элементами множеств здесь могут быть числа, символы и булевы данные – то есть порядковые типы данных размером в один байт. Стало быть, мощность множеств в Паскале не превышает 256.
Объявление множествМножества объявляются конструкцией вида
SET OF <диапазон или тип>
Вот примеры объявления переменных типа множество.
{ объявление множества } { возможные элементы множества }
var SN1 : set of 10..100; { числа от 10 до 100 }
SN2 : set of byte; { числа от 0 до 255 }
SC1 : set of ’a’..’z’; { только малые латинские буквы }
SC2 : set of Char; { все символы }
Поскольку мощность множеств в Паскале не превышает 256, множества SET OF BYTE и SET OF CHAR представляют множества предельной мощности.
Присвоение значений множествамПеременным типа множество присваивают значения выражений того же типа, вот примеры таких операторов.
SN1:= [10, 20, 50]; { содержит три элемента }
SN2:= [11..20, 51..60]; { содержит 20 элементов }
SN2:= [0..255]; { содержит 256 элементов от 0 до 255 }
SN2:= SN1; { копия другого множества }
SC1:= [’z’, ’y’, ’x’]; { содержит три элемента }
SC2:= [’0’..’9’]; { содержит 10 элементов }
Как видите, для записи множеств в Паскале используют квадратные скобки, а не фигурные. Что позволено в записи множеств, и что запрещено?
Подряд идущие элементы можно заменять диапазоном с указанием крайних значений. Допустимо перечислять элементы в произвольном порядке и даже вставлять дубликаты, – они все равно будут отброшены. Вот примеры трех совершенно одинаковых по результату операторов.
SN1:= [5..8]; { множество задано диапазоном }
SN1:= [8, 7, 6, 5]; { то же множество, но в другом порядке }
SN1:= [5..8, 6, 6]; { трижды указано число 6, дубликаты будут отброшены }
Множеству любого типа можно присвоить пустое значение, например:
SB1:= []; SN1:= []; SC1:= [];
Пустое множество изображается парой квадратных скобок, между которыми ничего нет. Нельзя считать пустым множество [0], поскольку оно содержит один элемент – число ноль.
Элементами множеств могут быть только значения переменных и выражений соответствующего типа.
var k, n : byte; c: char;
...
k:= 10; n:= 20;
SN1:= [1..k, n+5]; { 1..10, 25 }
c:= ’m’;
SC1:= [c, ’a’, ’b’]; { ’m’, ’a’, ’b’ }
Компилятор не позволит включать в множество элементы, не относящиеся к нему, а также смешивать элементы разных типов, вот примеры таких ошибок.
SN1:= [5..200]; { в объявлении SN1 указан диапазон от 10 до 100 }
SC1:= [’a’, ’b’, 5]; { вместо символа ’5’ указано число 5 }
Операции с множествамиВ Паскале предусмотрены три известные вам вычислительные операции с множествами, а также сравнение множеств и проверка на вхождение элемента в множество.
Вычислительные операции – объединение, пересечение и вычитание – записывают на Паскале так:
SN2:= [3, 7] + [5, 2]; { объединение = [2, 3, 5, 7] }