Трещины и дислокации, или почему столь мала фактическая прочность материалов
Гриффитс написал классическую статью о своих опытах. Опубликованаона была в 1920 году. В ней подчеркивалось, что задача состоит не стольков том, чтобы объяснить, почему тонкие волокна прочны, сколько в том, чтобыпонять, почему столь мала прочность толстых волокон. Ведь одиночная цепочкаатомов неизбежно должна либо обладать теоретической прочностью, либо жевообще не иметь ее.
Становилось ясным, во всяком случае Гриффитсу, что в реальном мире,где материалы обнаруживают лишь малую и крайне переменчивую долю прочностиих химической связи, на самом деле механическую прочность определяет механизмослабления. И только много позднее, уже в наше время, когда мы научилисьполучать материалы, прочность которых составляет значительную долю теоретическойвеличины, действительно важную и полезную роль приобрело уменье изготовлятьматериалы с очень прочными химическими связями.
Слабость стеклянных волокон подводит нас к вопросу о гриффитсовых трещинахи возвращает к профессору Инглису, которого мы покинули в главе1 в раздумье над тем, почему морские суда, обладающие по тогдашнимрасчетам большим запасом прочности, разламываются надвое в открытом океане.Инглис рассчитал, как разного рода вырезы, вроде люков на палубе, влияютна прочность крупных сооружений, в частности морских судов. Гриффитсу жепришла в голову блестящая мысль распространить расчет Инглиса на объектыгораздо меньших размеров, с надрезами почти молекулярной величины и стольмалой толщины, что их нельзя рассмотреть в оптический микроскоп.
Концентрация напряжений
Каковы бы ни были размеры надрезов-концентраторов, сама концентрация напряженийвсегда играет огромную роль. Как показал Инглис, всякое отверстие, любой острыйнадрез в материале создает в нем местное повышение напряжений. Этот местныйвсплеск напряжения, величину которого можно рассчитать, зависит только от формыотверстия и никак не связан с его размерами. Все инженеры знают о существованииконцентрации напряжений, но далеко не все ее чувствуют. Действительно,полагаясь лишь на здравый смысл, трудно понять, почему крохотное отверстиеослабляет материал в той же степени, что и большая дыра[25]: это несколькопротиворечит привычным представлениям. Там, где есть малые отверстия и надрезы,материал начинает разрушаться от усталости очень скоро, но и при обычномстатическом разрушении, то есть под действием постоянных нагрузок, такиеотверстия и надрезы делают свое дело. Когда стекольщик режет стекло, он нестарается прорезать его на всю толщу листа, а делает лишь неглубокий надрез наповерхности, после чего по такой царапине стекло легко разламывается.Ослабляющее действие царапины практически не зависит от ее глубины: мелкаяцарапина действует ничуть не слабее глубокой, поскольку степень повышениянапряжений зависит лишь от остроты ее кромки.
Нетрудно нарисовать физическую картину того, что же в действительностипроисходит у таких надрезов, как трещины, особенно если рассматривать существодела на атомарном уровне. Обратившись к рис. 18, вы поймете, что при растяженииодиночная цепочка атомов испытывает равномерное напряжение, поэтому онаобладает теоретической прочностью (рис. 18, а).
Рис. 18. Возникновение концентрации напряжений у кончика трещины.
Взяв еще несколько таких же цепочек и расположив их так, чтобы они образоваликристалл (рис. 18, б), мы увидим, что пока еще ничто не мешает каждойцепочке в отдельности нести ее полное теоретическое напряжение. Предположимдалее, что мы перерезали несколько соседних межатомных связей, то естьсоздали трещину (рис. 18, в). Разумеется, разорванные цепочки ужене смогут, как прежде, нести нагрузку, передавая ее от атома к атому. Теперьэту работу должны взять на себя оставшиеся цепочки. И сила как бы обходиттрещину по самому ее краю. Таким образом, почти вся нагрузка, которую неслиразрезанные атомные цепочки, падает теперь на единственную атомную связьу самого кончика трещины (рис. 18, г). Ясно, что при подобных обстоятельствахперегруженная связь порвется раньше всех других. Когда же такое перегруженноезвено лопнет, положение не изменится к лучшему. Напротив, оно ухудшится,так как на долю соседнего звена добавится не только нагрузка перерезанныхс самого начала цепочек (при создании трещин), но еще и та доля нагрузки,которая приходилась на только что лопнувшую цепочку. Таким образом, трещинав кристалле оказывается инструментом, с помощью которого приложенная извнеслабая сила рвет поочередно одну за другой прочнейшие межатомные связи.Так трещина и бежит по материалу, пока не разрушит его до конца.
Инглис вычислил коэффициенты концентрации напряжений, показывающие,во сколько раз местное напряжение больше среднего не только для прямоугольныхвырезов, но и для вырезов другой формы, например круглых и цилиндрическихотверстий. Сильно вытянутое эллиптическое отверстие можно считать трещиной.Для эллиптической трещины коэффициент концентрации напряжений будет выражатьсяформулой1+2x(L/R)1/2где L есть полудлина трещины, a R - радиус кривизны еекончика. Оказалось, что эта формула справедлива не только для эллипса:у всякого острого надреза коэффициент концентрации напряжений имеет почтитакую же величину. Кстати сказать, у круглого отверстия местное напряжениевтрое превышает среднее. Рассмотрим трещину длиной, скажем, 2 мкм с радиусомкривизны ее кончика 1 А. Такая трещина слишком мала, чтобы ее удалось увидетьс помощью оптического микроскопа, ее трудно обнаружить даже с помощью электронногомикроскопа. Но тем не менее она повышает напряжение у своего кончика в201 раз. При подобной концентрации напряжений прочность гриффитсова стекладолжна снизиться от 1500 кг/мм2 до уровнявсего нескольких килограммов на квадратный миллиметр, то есть до величины,близкой к прочности обычного стекла. Все это позволило Гриффитсу предположить,что в обычном стекле содержится множество очень тонких трещин, которыене поддаются обнаружению с помощью каких бы то ни было обычных средств.Он ничего не говорил о том, как они выглядят или каково их происхождение,а просто утверждал, что если они существуют в обычном стекле - а почемубы им не существовать! - то стекло должно быть малопрочным. Он предположилдалее, что по какой-то неизвестной причине в тонких волокнах они образуютсяреже, а в тончайших почти не попадаются, быть может, лишь потому, что имтам нет места.
Гриффитсовы трещины
По-видимому, Гриффитс думал, что трещины, которые он считал реальносуществующими в стекле, разбросаны во всем его объеме и возникают в процессезатвердевания стекла из-за неспособности его молекул сомкнуться друг сдругом на отдельных участках. Оглядываясь назад, можно только удивлятьсятому, как много времени понадобилось, чтобы отвергнуть это представление.Расчеты Гриффитса показывали, что трещины - каково бы ни было их происхождение- должны быть весьма узкими, возможно, порядка сотых долей длины волныобычного видимого света. Так как увидеть объекты, по размерам намного меньшие,чем длина волны освещающего их света, принципиально невозможно, то рассмотретьтрещины Гриффитса непосредственно через обычный оптический микроскоп, которыйв лучшем случае позволяет видеть предметы размером около полумикрона, небыло никакой надежды. Пришлось ждать появления электронного микроскопа,в котором изображение создается электронами с длиной волны что-нибудь около1/25 А, в то время как видимый свет имеет длину волны около 4000 А.
Но уже в 1937 году, то есть еще до того, как в лабораториях появилисьэлектронные микроскопы, Андраде и Цинь решили поискать трещины в стеклес помощью простого оптического микроскопа, прибегнув к так называемомудекорированию. Этот метод, часто весьма действенный, можно представитьсебе следующим образом. Пусть тонкая проволока, например телеграфный провод,натянута так далеко от вас, что ее совершенно не видно. Но если бы удалоськак-то заманить на нее стаю ласточек, проволока сразу же бросилась бы намв глаза. (По этой самой причине связисты иногда насаживают пробки на телеграфныепровода.) Теперь представьте себе, что появилась новая стая и уселась наспины уже знакомых нам птиц - проволока стала еще заметнее. В принципетаким образом нашу проволоку можно сделать сколь угодно толстой. Теперьостается лишь вспомнить, что некоторые вещества кристаллизуются легче,если на подложке есть какие-то отклонения от регулярности. Выбрав подходящеевещество и заставив его кристаллизоваться на какой-то поверхности, вы частоможете заметить, что новые кристаллы зарождаются почти исключительно натонких нерегулярностях этой поверхности и, следовательно, делают последниевидимыми для наблюдателя.
Андраде осаждал на поверхности стекла пары натрия, которые при конденсациисоздавали на ней сетку линий. Можно было предположить, что это были трещины,но полной уверенности, конечно, не было: в подобном опыте нетрудно былополучить изображение марсианских каналов или любых других химер. Но дажеесли эти узоры и выявляли тончайшие трещины на поверхности стекла (что,кажется, в действительности так и было), то это еще не служило доказательствомотсутствия в стекле внутренних трещин.
В послевоенные годы удалось показать, что исключительно прочны не толькотончайшие, но и довольно толстые волокна, если они тщательно изготовлены.Прочные стекловолокна от прикосновения к ним слабеют, а слабые - упрочняются,если удалить с них поверхностный слой химическим путем. Все это дало основаниясчитать, что волокна ослабляются главным образом дефектами на поверхностистекла.
Приблизительно в 1957 году мы с Маргарет Паррат и Дэвидом Маршем провелиочень много времени за исследованиями поверхности стекла. Усовершенствовавметодику Андраде, Паррат научилась воспроизводить прекраснейшие образцытрещин на поверхности стекол всех сортов. Многие из этих трещин, пожалуй,большая их часть, представляли собой тончайшие волосовины. Плотность распределениятрещин очень хорошо увязывалась с прочностью образцов различных стекол.Вопрос теперь состоял только в том, чтобы выяснить, как же трещины возникалина поверхности стекол. Во многих случаях сомнений насчет природы трещинне оставалось: трещины оказались царапинами, нанесенными стеклу другимисоприкасавшимися с ним твердыми телами. Паррат сфотографировала такие типичныетрещины (рис. 19 и 20).
Рис. 19. Трещинывблизи царапины на поверхности стекла (7000).
Рис. 20. Царапина на предметном стекле микроскопа
Достаточно самого легкого прикосновения к стеклу чтобы создать на егоповерхности совершенно законченные образцовые трещины. Лишь в очень редкихслучаях стекло оберегается от подобных прикосновений с самого момента егоизготовления из расплавленной стекломассы.
Отнюдь не исключено, что это простое объяснение давало исчерпывающий ответ навопрос о происхождении трещин для большей части обычныхстекол[26]. Высокую прочность тонких волокон можно отчастиобъяснить тем, что они очень легко гнутся и их проще изогнуть, чем поцарапать.Однако наблюдается ряд случаев, когда прочность стекла меняется, хотя егоповерхность сохраняется совершенно неповрежденной. Одна из причин этого былаизучена Маршем.
Когда жидкости затвердевают, они чаще всего кристаллизуются. Обычно кристаллыбывают плотнее исходной жидкости (хотя известны исключения из этого правила,например вода). В кристаллах атомы располагаются более упорядоченно и теснеедруг к другу, чем в жидкости. Стекла же в процессе затвердевания бываютстоль вязкими, что их молекулы не успевают рассортироваться так, чтобыобразовать кристаллы. Поэтому стекло - это переохлажденная и застывшаяжидкость, а не кристаллическое твердое тело.
Однако и в стекле существует тенденция к кристаллизации, и некоторыестекла со временем превращаются в кристаллические тела. Это явление называютрасстекловыванием. Поскольку стекла при расстекловывании дают усадку, этотпроцесс часто сопровождается разупрочнением, отчего стекла рассыпаютсяна кусочки. Обычно античные стекла доходили до нас в расстеклованном состоянии,ведь их, как правило, плохо варили. К тому же с тех пор прошло более чемдостаточно времени и они вполне успели закристаллизоваться. Правда, ставнепрочными, они не стали менее прекрасными. Как показал Марш, в некоторыхстеклах, даже самых свежих, расстекловывание происходит с самого начала.Ему удалось сфотографировать на электронном микроскопе крошечные кристалликии показать, что усадка в ходе их образования достаточна, чтобы зародиласьтрещина, бегущая затем по всему куску стекла (рис. 21). Надо подчеркнуть,что стекло в тонких волокнах от обычного стекла ничем особенно не отличается.Если поверхность толстого стекла сделать гладкой и постараться сохранитьее в таком виде, то по прочности это стекло не уступит тонкому волокну.Однако добиться этого на практике обычно очень трудно.
Рис. 21. Рост клиновидного кристалла в стекле.
Если в стеклоподобном аморфном материале трещина, берущая начало оттого или иного местного дефекта, не распространяется, то почему же и какимобразом он все-таки разрушается? В таких случаях материал, подобно пластилину,течет и разрушается от сдвига. Поскольку стекло начинает течь при комнатнойтемпературе лишь под действием очень большого напряжения и к тому же онолегко разрушается от распространения трещины, постольку оно, как и другиеаморфные материалы, практически всегда разрушается хрупким образом. Мык этому привыкли, и нам трудно представить себе, что они могут разрушатьсяиначе. На самом же деле, если растрескивание стекла, которое происходитпри растяжении, предотвратить, например, путем всестороннего его сжатия,то в этом случае стекло можно заставить течь, как текут пластичные материалы.Стекло, когда на него оказывают давление притупленной алмазной иглой (индентором),ведет себя подобно замазке, но ведь касательное напряжение, необходимоедля течения, гораздо выше наблюдаемой прочности. В обычных стеклах онопревышает при комнатной температуре 350 кг/мм2.
Совсем недавно Марш показал, что стекло, если в нем почти отсутствуюттрещины, действительно течет. При комнатной температуре напряжение теченияв стекле обычно превосходит 350 кг/мм2.Интересно, что температура сравнительно слабо влияет на тенденцию к разрушениюстекла путем распространения трещин, в то время как касательное напряжениетечения сильно зависит от температуры. Когда мы нагреваем стекло, не доводяего до плавления, напряжение течения снижается быстрее, чем напряжениехрупкого разрушения. Именно поэтому нагретое стекло (не обязательно оченьгорячее) довольно легко гнется, формуется и поддается выдуванию. Наоборот,свободное от дефектов стекло становится прочнее при охлаждении, так какпри этом повышается его сопротивление течению. Из-за этого стекло с хорошейповерхностью при температуре -180° С по своей прочности примерно в двараза превосходит то же стекло при комнатной температуре.
Обобщая все сказанное выше, можно заключить, что всегда существуют двамеханизма, ведущих спор за право разрушить материал, - пластическое течениеи хрупкое растрескивание. Материал уступает тому или другому из них. Еслион начинает течь, прежде чем растрескается, то, значит, он пластичен. Еслиже он растрескивается до того, как начал течь, то мы имеем дело с хрупкимматериалом. Потенциальные возможности обоих видов разрушения заложены вовсех материалах.
Прочность хрупких кристаллов и рассказ об усах
Все, что мы говорили,довольно хорошо объясняет прочность стекол и таких аморфных минералов,как кремень или вулканическая лава обсидиан. Но подавляющее большинствотвердых тел, природных и искусственных, имеет кристаллическую структуру.Существует своего рода предрассудок, что кристаллические материалы не могутбыть прочными. Так, слесарь, обнаружив сломанный коленчатый вал или какую-либодругую деталь автомобиля, может сказать, что "она кристаллизовалась". Вкаком состоянии была эта деталь до "кристаллизации", он не объяснит, ясно,что она не была аморфной. Нет нужды повторять, что все металлы, почти всеминералы, большинство керамических материалов и привычные нам сахар и соль- вещества кристаллические. Соображения здравого смысла вряд ли приведутк заключению, что только регулярная упорядоченная упаковка атомов или молекулможет быть причиной малой прочности твердого тела. И действительно, этоне так.
Однако, когда мы имеем дело с твердыми хрупкими кристаллами, на практикеих прочность оказывается даже ниже, чем прочность монолитного стекла, ив своем "сыром" виде неметаллические кристаллы вполне заслуживают тогопрезрения, с которым к ним относятся инженеры.
Теперь самое время поговорить об "усах". Мы часто слышим о "металлическихусах", как если бы они были единственным типом усов. На самом же деле этиусы менее обычны и менее интересны, чем неметаллические, поэтому мы будемговорить главным образом о последних. Усы, о которых пойдет речь, не имеютничего общего с человеческим волосом и представляют собой длинные тонкиеигловидные кристаллы, которые могут быть случайно или преднамеренно выращеныиз большинства веществ. Существует много способов их выращивания. Толщинаусов обычно составляет 1–2 мкм, хотя их длина может измеряться миллиметрамии даже сантиметрами.
Рис. 22. Усы, растущие на металличеcкой поверхности
Иногда усы вырастают случайно на металлических поверхностях (рис. 22),и, когда эта поверхность оказывается элементом электрической схемы, вполневозможно короткое замыкание, которое иногда оказывается досадным, иногдадорогостоящим, а порой и опасным, смотря по обстоятельствам. Такого родаметаллические усы были известны довольно давно, но к ним относились развечто с некоторым любопытством, когда к этому не примешивалось чувство досады.Так продолжалось до 1952 года, когда Херрингу и Голту случилось изогнутьнесколько оловянных усов. Они заметили при этом, что при деформации ~2%усы остаются упругими. Такая упругая деформация соответствовала напряжению,которым никто никогда не нагружал не только олово, но и, возможно, никакойдругой металл. Это было похоже на поведение тонких волокон с аномальновысокой прочностью, что, естественно, привлекло к себе огромное внимание.
Херринг и Голт работали с оловом. Олово - металл, а от металла каждыйпочему-то ожидает прочности. Меня же в то время занимал вопрос, можно лисделать прочными и обычно слабые неметаллические кристаллы. И вот однажды,это было в 1954 году, я зашел на склад химических реактивов и попросилдать мне что-нибудь такое, что растворялось бы в воде, а кристаллизовалосьбы в виде игл. Кладовщик дал мне бутылку с гидрохиноном, веществом, котороеобычно используется в фотографических проявителях. Бутылка была полна сухихкристаллов толщиной примерно в обычную иглу и около сантиметра длиной.Оперируя скальпелем, я быстро понял, что их прочность пренебрежимо мала.Затем я растворил несколько гидрохиноновых кристаллов в воде, нанес каплюэтого раствора на предметное стекло микроскопа и стал ждать, когда водаиспарится. В процессе испарения в поле зрения микроскопа вырастали игольчатыекристаллики, которые были намного меньше растворенных мною.
Новые кристаллы имели нитевидную форму. Вначале они были так тонки,что их едва можно было различить в оптический микроскоп. Пошевелив их иглой,я обнаружил, что эти маленькие нити очень прочны, но установить точно,насколько они прочны, - было очень непросто (рис. 23).
Рис. 23. Нитевидные кристаллы, или усы гидрохинона,растущие из водного раствора. Обратите вниамние на неясное изображение- это ус, который освободился от мешающих ему механических ограниченийи выпрямляется (параллельные полосы вызваны дифракцией - это моя оплошность!)(100).
Это меня взволновало, и очень скоро я начал пробовать кристаллы разныхвеществ, взятых с полок собственной лаборатории и лабораторий своих коллег.Некоторых навыков и минимальной хитрости было достаточно, чтобы получитьв виде очень тонких нитей - усов кристаллы почти любого растворимого твердоговещества. В ход пошли горькая соль и даже хлористый натрий, обычная повареннаясоль. И во всех случаях усы оказывались прочными. Можно было предположить,что их прочность как-то связана с влажностью их поверхности. В 20-е годырусский ученый А.Ф. Иоффе обнаружил, что некоторые вещества после смачиваниястановились прочнее. Правда, есть и такие вещества, которые при этом, наоборот,разупрочняются. Однако, насколько я мог определить, высушивание усов несказывалось заметно на их прочности.
На этой стадии работы было много трудностей. Например, мы не имели достаточнонадежных методов измерения прочности усов.
Обычно мы изгибали усы под микроскопом с помощью игл; измерив приблизительнотолщину и радиус кривизны, можно было определить деформацию при разрушениис помощью простой теории изгиба балок. Можно себе представить, сколь дьявольскинеудобен и неточен был этот метод.
Усы обычно зарождались в виде чрезвычайно тонких нитей, которые затемстановились толще. Заметив это, я усовершенствовал методику изгиба: призарождении уса я начинал взбалтывать воду и затем оставлял усы утолщатьсядо тех пор, пока они не ломались. Это была менее грубая методика, но всееще весьма неудовлетворительная.
Как раз в это время (1956 год) ко мне пришел работать Дэвид Марш и буквальнопервыми его словами были: "Почему бы не сделать подходящую разрывную машину?"Кажется, я без обиняков прогнал его, посоветовав не заниматься глупостями. Усыбыли слишком малы, чтобы рассмотреть их невооруженным глазом, мнепредставлялось, что нельзя сделать испытательную машину для столь крошечныхобразцов. Марш ушел и занялся отнюдь не глупостями: он возвратился смикроиспытательной машиной, которая на удивление всем… работала.Сконструировал и построил он ее сам. Один из вариантов машины Марша (Марк-III)пошел в серийное производство, и сегодня, пожалуй, не найдется ни однойуважающей себя лаборатории, которая бы ее не имела. На этой замечательноймашине можно при необходимости испытывать волокна с поперечным сечением 0,1мкм2 (по существу их не видно в оптический микроскоп) и длиною около четвертимиллиметра. Она способна измерять удлинения менее чем 5 А, что соответствуетпримерно разрешению хорошего электронногомикроскопа[27].
Располагая таким устройством, мы могли уже получить вполне реальные результаты.С самого начала мы обнаружили, что высокая прочность может быть полученапочти на всех кристаллах, от горькой соли до сапфира, лишь бы кристаллимел форму тонкого уса. В этом случае не имели значения ни химическая природакристалла, ни метод, которым он был выращен. Мы испробовали, должно быть,сотню различных веществ, так что никаких сомнений относительно этого неоставалось.
Построив график зависимости прочности уса от его толщины, мы обратиливнимание на то, что кривая для каждого данного типа усов была чертовскипохожа на аналогичную кривую для стеклянных волокон (глава2). Более того, когда мы посмотрели на зависимость от толщины не прочности,а деформации при разрушении, то обнаружили, что все точки для всех испытанныхусов лежат на одной и той же кривой. Так, на рис. 24, например, показаназависимость деформации при разрыве от толщины усов двух резко различающихсявеществ - кремния и окиси цинка. Разделить эти кривые невозможно.
Рис. 24. Зависимость прочности усов от их толщины.Белый кружок - усы кремния; черный - усы окиси цинка.
Конечно, велик был соблазн считать, что прочность и разрушение усов- а потому, быть может, других кристаллов - определяется поверхностнымитрещинами, как и в случае стекла. Однако каких-либо трещин мы не обнаружили,и были все основания полагать, что их просто не должно существовать. Когдаус вырастает из раствора или паров, то обычно вначале появляется оченьтонкая нить, которая в электронном микроскопе кажется почти идеально гладкой.Затем эта нить утолщается, на нее как бы натягивается сверху новый слойматериала.
Поначалу эти слои могут быть моноатомными или мономолекулярными, но,конечно, различные слои нового материала будут подпитываться атомами изокружающей среды с несколько различными скоростями. Тогда слой, которыйзахватывает атомы быстрее, будет расти вдоль оси кристалла с большей скоростьюи может настигнуть нижний слой, растущий медленнее. Однако обогнать егоон не может, и тогда образуется ступенька, имеющая двойную высоту. Онабудет требовать двойного количества материала для своего роста, чтобы продвигатьсяс той же скоростью, что и остальные слои. В действительности, однако, скоростьподвода материала путем диффузии остается примерно той же, что и для единичныхслоев. Следовательно, двойной слой движется со скоростью, меньшей чем средняя,и постепенно все больше растущих слоев нагромождаются вслед за ним и немогут его обогнать. Образуется серия обрывистых ступенек (рис. 25). В среднемэти ступеньки будут тем выше, чем "старше" и, следовательно, толще кристалл.Когда рост кристалла прекращается, эти ступеньки остаются на поверхностии их можно видеть в микроскоп.
Рис. 25. Ступеньки роста на большом усе, движущиеся вниз по кристаллу
Интуиция подсказывает, что трещина - штука скверная, но далеко не очевидно,что и ступенька может вызвать вредную концентрацию напряжений. Готовыхтеоретических решений задачи о поведении ступенек в литературе не было,и я попросил Марша заняться изучением этого вопроса. Методом фотоупругости,работая на прозрачных моделях в поляризованном свете, Марш смог доказать,что ступенька так же вредна, как и эквивалентная ей трещина. По существуее можно рассматривать как половину трещины. Экспериментальный результатМарша был затем математически подтвержден Коксом.
Хотя эта работа была выполнена для объяснения прочности крошечных кристалликов,полезно обратить на нее внимание инженеров, которые, опасаясь трещин, поройлегкомысленно относятся к ступенькам в машинах и конструкциях. Заметим,что в случае ступенек, как это было и с трещинами, концентрация напряженийопределяется не абсолютным размером дефекта, а отношением глубины к радиусуоснования дефекта.
Изучив под электронным микроскопом серию усов, Марш нашел, что для исследованныхим веществ радиус основания ступеней роста был практически постоянным исоставлял примерно 40 А. Затем он сравнил высоту наиболее опасных ступенекс измеренной прочностью усов. Связь была налицо и не оставляла места сомнениямотносительно объяснения масштабного эффекта на усах. Так как большие усыничем, кроме размеров, не отличаются от других типов кристаллов, это должнобыло послужить общим объяснением прочности и разрушения хрупких кристаллов.
Дэш своими опытами показал, что поведение усов в этом смысле не отличаетсяот поведения больших кристаллов. Он взял большой (2 см) кристаллкремния, который в обычных условиях особой прочностью не отличается, иочень тщательно его отполировал. Заключив этот кристалл в прозрачную коробку,снабженную механизмом изгиба, Дэш регулярно появлялся с ним на разногорода конференциях и демонстрировал свой опыт всем и каждому: кристалл могизгибаться без разрушения до деформации 2%, что соответствует напряжению450 кг/мм2 - цифра очень внушительная.
Когда мы обращаемся к более распространенным кристаллическим материалам,в цепи наших рассуждений появляется еще одно звено. Можно, конечно, действуяподобно Дэшу, получить довольно большой монокристалл, но, как правило,каждый отдельный кристалл в наших обычных материалах достаточно мал. Усы- это все-таки исключительные по своим свойствам малые монокристаллы. Обычноже твердые тела больших размеров являются поликристаллами: можно сказать,что они собраны из большого числа малых кристалликов, примыкающих другк другу в трех измерениях, подобно булыжникам мостовой или областям нагеографической карте. Форма отдельных кристаллов может быть весьма неправильной,они примыкают один к другому по границам обычно очень плотно, в чистыхматериалах контакт на молекулярном уровне достаточно хороший. Вообще говоря,поверхностная энергия этих границ выше, чем энергия поверхностей разрушенияв кристаллах, и поэтому в достаточно чистых материалах "границы зерен"не являются источником низкой прочности.
Другое дело - материалы с большой концентрацией примесей. Хорошо известно,что, когда жидкость замерзает, в процессе кристаллизации растущие кристаллыстремятся изгнать из своего объема примеси. Например, лед, образовавшийсяиз соленой воды, при таянии дает достаточно пресную воду (что очень удобнодля полярников). Этот процесс приводит к тому, что примеси в твердых телахнакапливаются по границам зерен. Здесь же собираются и вакансии, то естьпоры атомных размеров. Все это может превратить границы зерен в поверхностиразрушения. Именно из-за этого небольшая добавка неподходящей примеси можетразрушить сплав. Иногда понижение прочности дает положительный эффект.Рассмотрим, например, что дает добавление антифриза к воде, охлаждающейдвигатель автомобиля. Основной смысл этой операции состоит в том, что гликоль,существенно понижая точку замерзания полученной смеси, оттягивает неприятности,но, если все-таки смесь замерзнет, лед получается пористым, лишенным механическойпрочности и вряд ли способен сильно навредить машине.
Однако для большинства достаточно чистых кристаллических тел границызерен довольно прочны и поведение твердых хрупких материалов можно сравнитьс поведением усов и других монокристаллов, а последнее, как мы видели,очень похоже на поведение стекла. В обоих случаях проблема прочности иразрушения почти исключительно связана с гладкостью поверхности. Для стеклаопределяющим дефектом обычно является поверхностная трещина, для хрупкихкристаллов - ступенька на поверхности. Наличие внутренних дефектов в хрупкомкристалле имеет меньшее значение.
Как мы увидим дальше, для пластичного мягкого материала существует совершеннодругая проблема.
Дислокации и пластичность
Вещества, с которыми мы имели дело до сих пор, считаются в технике хрупкими.Это не значит, конечно, что они рассыпаются на куски при первом же прикосновении.Нет, мы уже видели, что некоторые из них очень прочны. Абсолютного деленияна хрупкие и пластичные вещества нет, но, вообще говоря, хрупкие тела имеютдостаточно хорошо определенные свойства. Если не считать небольших упругихизменений, которые исчезают после снятия нагрузки, хрупкие тела не деформируютсяперед разрушением, и причиной их разрушения является то, что одна или несколькотрещин пробегают через весь материал. Обломки хрупких тел после разрушенияможно очень хорошо подогнать друг к другу; например, можно довольно искусносклеить разбитую вазу. В пластичных материалах, например в мягкой стали,перед разрушением наблюдаются большие необратимые искажения формы, такчто из получившихся после разрушения кусков нельзя уже сложить первоначальныйпредмет.
Хрупкие вещества, которыми мы пользуемся в повседневной жизни, - стекло,фаянс, кирпич, бетон, некоторые пластмассы - вполне удовлетворяют нас.Однако для изготовления различного рода машин мы обычно предпочитаем пластичныеметаллы. Хрупкие тела разрушаются путем полного разделения двух соседнихслоев атомов или молекул под растягивающим напряжением, остальной объемматериала при этом не нарушается. Поведение металла напоминает в чем-топоведение пластилина. Еще до разрушения, то есть до разделения образцана две части, в объеме материала развивается интенсивное течение, подобноетечению вязкой жидкости. В это время соседние атомные слои, не разделяясь,сдвигаются друг относительно друга подобно колоде карт.
После того как соседние слои атомов проскользнут на достаточное расстояниеи материал окажется деформированным этим сдвигом, прочность, как правило,не снижается, так как взамен разорванных связей атомы могут завязать новыес другими партнерами. В некоторых случаях материалы после такого процессадаже упрочняются (это называется нагартовкой или наклепом). Однако, еслипроцесс зашел слишком далеко, материал ослабнет и в конце концов разрушится.Величина наклепа и удлинение,которые может выдержать пластичный материал, сильно колеблются от металлак металлу, от сплава к сплаву. Почти всегда с нагревом эти величины возрастают.Что и говорить, способность металлов пластически деформироваться и, следовательно,получать заданную форму в холодном и нагретом состояниях является их огромнымдостоинством. Кроме того, пластичность вносит свой вклад в сопротивлениеметаллов трещине (см. главу 8). Однако она же является и главной причинойих сравнительно низкой прочности. Мы уже говорили, что если образец неразрушается хрупким образом из-за наличия трещины под определенным угломк направлению растяжения, то он может разрушиться путем "соскальзывания"под углом 45° к оси (рис. 26) и, если для такого процесса потребуется меньшаясила, его ничто не остановит.
Рис. 26. Вязкое разрушение при растяжении.
Недавно А. Келли показал, что точный расчет сопротивления твердого теласдвигу достаточно сложен и от вещества к веществу сопротивление это сильноизменяется. Однако мы можем получить приближенное значение теоретическойпрочности на сдвиг с помощью очень простой модели, и результат не будетгрубым. Рассмотрим модель - на бумаге или в натуре, - которая состоит изслоев шариков, представляющих атомы. Существуют такие взаимные расположенияслоев, при которых они лежат наиболее близко друг к другу. Чтобы вывестиих из такого положения, необходимо немного оттянуть слой от слоя. Такомудвижению сопротивляются растягиваемые связи: шарики-атомы против того,чтобы покинуть комфортабельные ямки минимальной энергии.
Рис. 27. Схематическое изображение сдвига,происходящего путем скольжения целой плоскости атомовбез помощи дислокационных механизмов.
На рис. 27 изображена двумерная модель - два параллельных ряда монет,лежащих на столе. Ясно, что последнее сопротивление сдвигу исчезает в момент,когда атомы- монеты балансируют на вершинах друг у друга; такое положениесоздается в момент, когда слой оказывается сдвинутым относительно другогослоя на угол 30°. Пройдя эту точку, атомы будут сваливаться в положениеравновесия на дне следующей ямы, и сдвиг на одно межатомное расстояниебудет завершен. Сопротивление сдвигу началось с нуля, возросло до некоторогомаксимума, затем снова упало до нуля, когда атомы оказались на вершинах.Сопротивление будет максимальным примерно на полпути к вершине, в нашемслучае это соответствует углу сдвига около 15°. Трехмерный случай будетнемного более сложным, для него максимум наступает при 10°. Для кристаллов,которые состоят из атомов различных размеров, этот угол может быть ещеменьше.
Очень грубые вычисления, основанные на этой модели, дают величину теоретическойпрочности на сдвиг порядка 10% от модуля упругости Е. (Более сложныйрасчет, проведенный А. Келли, дает 5–10% от Е.) Впрочем, не слишком большаяточность этих чисел особого значения не имеет: при обычных испытаниях реальныхматериалов мы достигаем их весьма редко[28]. Теоретическое значение прочности на сдвиг для железасоставляет около 1200 кг/мм2, но практически кристалл очень чистого железасдвигается при напряжениях, лежащих между 1,5 и 8,0 кг/мм2, для рядовыхсталей прочность на сдвиг составляет 15–25 кг/мм2, для самых прочных сталей -около 150 кг/мм2.
Очень мягкие металлы, например чистые золото, серебро, свинец, можно испытыватьна сдвиг руками. После сильного наклепа сопротивление сдвигу несколькоповышается, но оно никогда не приближается к теоретической величине. Широкоизвестна ковка металла, которая делает его более твердым: таким путем повышалитвердость кромок еще медного и бронзового оружия, а в старину часовых делмастера всегда обрабатывали так латунные заготовки шестеренок. (Если вывоздержитесь от смазки шестеренок старинных напольных часов, то зубья ихне только перестанут собирать пыль и быстро истираться, но с течением временибудут становиться тверже и полироваться, и так будет продолжаться века.)
Вплоть до 1934 года общепринятое объяснение всех этих явлений было крайненеубедительным и походило на желание уйти от вопроса. Вот оно: "Скольжениепроисходит вследствие того, что малые кусочки кристалла, обламываясь, работаюткак подшипники качения. Когда их становится слишком много, они начинаютмять друг друга, и это является причиной наклепа". Как говорил герцог Веллингтон,"если вы верите в это, вы можете поверить во что угодно".
В 1934 году Дж. Тэйлор из Кэмбриджа, который изобрел лемешный якорь,придумал также дислокацию. По крайней мере, он "посадил" дислокацию в научнуюстатью как гипотезу. Основная идея была чрезвычайно проста, настолько проста,что не могла быть ошибочной. И она в самом деле оказалась верной.
Почти невероятно, рассуждал Тэйлор, что металлические кристаллы в действительноститак совершенны, как мы о них думаем, когда вычисляем их прочность. Давайтепредположим, что во всем объеме кристалла, быть может, через каждый миллионатомов или что-нибудь около этого, встречаются небольшие неправильности.При этом нас интересуют не точечные искажения, такие, как чужеродные атомы,которые могут обеспечить движение отдельных точек, а линейные дефекты,которые позволят продвинуться вперед целым армиям атомов на широком фронте.
Кристалл состоит из слоев, или плоскостей атомов, которые показалисьбы наблюдателю, уменьшенному до размеров электрона, громоздящимися в ужасающейбесконечной регулярности, подобно страницам какой-то громадной книги. ПредположениеТэйлора заключалось в том, что кое-где слой атомов оказывается незавершенным,как если бы кто-то вставил лишний лист бумаги между страницами книги итеперь она в одних местах состоит, положим, из миллиона страниц, а в других- из миллиона и одной страницы. Самые интересные явления разыгрываются,конечно, вдоль линии, где лишний слой атомов подходит к концу, на кромке"лишней" плоскости. Посмотрев на рис. 28, а, мы увидим, что должныбыть две области, по обе стороны от кромки экстраплоскости, где атомы сдвинутына угол, примерно соответствующий теоретической прочности кристалла насдвиг. Другими словами, в этих зонах кристалл практически разрушен.
Рис. 28. Схематическое изображение сдвига,происходящего с помощью краевой дислокации. Черные атомы, конечно, не обозначаютте же самые атомы в каждой из схем. Они лишь показывают положение "лишней"атомной плоскости. Когда дислокация движется, ни один из атомов не смещаетсясо своего исходного положения более чем на долю ангстрема.
Но еще более важно то, что дислокации оказываются подвижными. Если мыприложим небольшую сдвиговую нагрузку к кристаллу, то обнаружим, что необходималишь малая добавочная деформация, чтобы разорвать всю линию сильно натянутыхсвязей. Но затем мы обнаружим (рис. 28, б), что в результате всярасстановка оказалась всего лишь смещенной на одно межатомное расстояние.Продолжая нагружать кристалл, мы будем вновь и вновь повторять этот процесси в конце концов вытолкнем дислокацию на поверхность кристалла (рис. 28, в).А сила, необходимая для этого, может быть очень малой.
Инженеры-механики и некоторые металловеды встретили идею Тэйлора в штыки,даже сейчас еще кое-кто из них издает глухое рычание. Однако физики академическоготолка с ликованием набросились на дислокации. Позже еще многие годы дислокаций,как таковых, никто не видел и, быть может, не ожидал когда-либо увидеть;но их гипотетические движения (дислокации одного знака отталкиваются другот друга и т.д.) и правила размножения (когда союз двух дислокаций освященвнезапным появлением в кристалле пяти сотен новых дислокаций) могли бытьтеоретически предсказаны, они давали превосходную пищу уму, были чем-товроде трехмерных шахмат.
Нужно сказать, почти все эти академические предсказания сбылись. ВначалеТэйлор предполагал, что скольжение в пластичных кристаллах обеспечиваетсятеми дислокациями, которые с самого начала присутствуют в кристалле благодаряслучайностям неидеального роста. Затем оказалось, что обычно для интенсивногоскольжения, которое происходит в пластичных материалах, этих дислокацийне хватает. Большие семейства новых дислокаций могут, однако, генерироватьсялибо вследствие дислокационных взаимодействий (источник Франка-Рида), либона резких концентраторах напряжений, например на кончиках трещин. Последнийслучай встречается чаще. Таким образом напряженный металл может быстрона полниться дислокациями (около 108 наквадратный сантиметр) и легко обеспечить себе течение под постоянной нагрузкойлибо стать послушным кузнечному молоту.
Напомним, что дислокация - это существенно линейный дефект, которыйможет довольно легко перемещаться в кристалле. Если дислокаций много, имне надо совершать далекие путешествия, дабы встретить другие дислокации.Результаты встречи бывают различными: например, могут образоваться новыедислокации, а чаще сближающиеся дислокации взаимно отталкиваются. Дислокацийстановится все больше и больше, двигаясь по кристаллу, они начинают мешатьдруг другу, переплетаясь, словно спутанные нитки. В результате материалупрочняется, и, если продолжать его деформировать, он станет хрупким.
Каждому знаком хрестоматийный пример: если надо сломать проволоку иликусок жести, то их следует несколько раз согнуть взад-вперед. Сперва металлдеформируется легко, затем немного упрочняется и, наконец, ломается хрупкимобразом.
Металл, упрочненный деформацией, может быть возвращен в исходное мягкоесостояние путем отжига, то есть нагревом его до полной или частичной рекристаллизации,при этом большинство избыточных дислокаций исчезает. Так, медные трубыследует отжигать после гибки, в противном случае они будут хрупкими.