Древесина и целлюлоза, или о деревянных кораблях и железных людях
Во время войны, когда мы работали над прочными пластиками, профессорЧарльз Гурни взял за правило декламировать мне чуть ли не каждый день стишок,смысл которого сводился к тому, что сделать пластик - не фокус, а вот создатьматериал, подобный дереву, под силу лишь всевышнему. Меня это несколькоугнетало, потому что древесина действительно лучше подходила для самолетов,чем те пластики, которые мы в то время умели делать. Даже и по сей деньимеются конструкции (например, гидропланы, определенного типа суда), длякоторых древесина остается наиболее подходящим материалом.
Древесина и другие формы целлюлозы с успехом применяются в технике.Но этого мало, целлюлоза в природе вообще имеет чрезвычайно широкое применение.Целлюлоза является конструкционным элементом всех растений. Именно прочностьи жесткость целлюлозы держат зеленую листву растения “лицом к солнцу”, безчего невозможен процесс фотосинтеза - отправной химической точки для всехформ жизни. На долю целлюлозы приходится в среднем около трети веса всейрастительности на Земле - практически эта цифра вне пределов точного учета.В целлюлозе заперта большая часть имеющегося на Земле углерода. В телахживотных целлюлоза встречается редко, хотя и обитает в океане небольшойкласс животных - оболочники, в основном состоящие из целлюлозы, внешнеони напоминают продолговатых медуз и, по-видимому, не имеют определеннойустойчивой формы. А вот в насекомых содержится полимерное вещество хитин,которое очень похоже на целлюлозу.
Обратившись теперь к материалам, которые использует человек, мы увидим, чтоцеллюлозе здесь принадлежит ведущая роль. Годовое потребление древесины в мире(не считая топлива) - где-то между 800 и 1000 млн. тонн (древесина- достаточно важный материал в технике, чтобы попасть в официальные статистические сборники). Необработанная древесина, идущая на заборы, а такжебамбук для строений, солома и камыш для крыш и т.д. используются сельскимнаселением примерно в таком же количестве, но каких-либо статистических данныхпо таким “неиндустриальным” материалам, конечно же, нет. Мировое производствочугуна и стали составляет около 400 млн. тонн, цифры для любого металла посравнению с этой пренебрежимо малы[35].
Отнесенные к единице веса величины прочности малоуглеродистой стали и древесинывполне сравнимы, так что возможно, что общая нагрузка, которую несет вмире древесина, даже превышает нагрузку, приходящуюся на сталь. Однаконесомненно, что нагрузки, которые доверяют стали, как правило, более впечатляющи.
Поскольку плотность древесины составляет в среднем примерно 1/14 плотностистали, то общий объем используемой в мире древесины может быть больше объемастали раз в 30.
Отношение количества потребляемой древесины к количеству стали от странык стране сильно изменяется, однако его нельзя считать показателем степенииндустриализации или технического прогресса. В Англии и Голландии в годна душу населения приходится около 500 кг стали и лишь 320 кг древесины.В США потребление стали примерно на том же уровне, потребление древесинызначительно выше - около 1100 кг. В Канаде еще выше - 1500 кг. В менееразвитых странах потребление и того и другого меньше.
Рост растения
Целлюлоза является примером стандартизованного производства в природе.Функции и общий вид молекул целлюлозы во всех, даже весьма сильно отличающихсяодно от другого растениях, одинаковы. Правда, молекулы могут быть несколькоразной длины, могут по-разному комбинироваться, но все это детали - химическаясуть их всегда одна.
Все достаточно развитые растения содержат пустотелые вытянутые веретенообразныеклетки-ячейки, стенки которых состоят в основном из целлюлозы. (Вот откудаи название “целлюлоза”: cell - ячейка, клетка, а суффикс ose- общий для всех сахаров, например фруктоза - фруктовый сахар и т. д.)Эти пустотелые веретена оказываются волокнами, которые принимают на себямеханические нагрузки, обеспечивая прочность.
Рис. 36. Молекула глюкозы.
Вначале в листьях растений из атмосферного углекислого газа CO2и воды под действием солнечного света образуется простой сахар-глюкоза(рис. 36). Подобно другим простым сахарам, глюкоза хорошо растворяетсяв воде (кстати, поэтому она легко усваивается организмом) благодаря еепяти гидроксильным группам, которые притягивают молекулы воды, а такжетому, что молекулы глюкозы физически достаточно малы и могут свободно блуждатьв объеме воды, конечно, при условии, что их там не слишком много. Концентрированныйраствор глюкозы напоминает патоку.
Рис. 37. Ячейки целлюлозной цепочки; обычно цепочка содержит несколько сотентаких ячеек
Растворенная в соке растения глюкоза проходит по его внутренним каналами поднимается к растущей клетке. В стенке этой клетки молекулы глюкозысвоими концами соединяются между собой (рис. 37). Соответствующая химическаяреакция известна как реакция конденсации:-ОН + НО- → -O- + Н2O
В результате образуется кислородная связь (-O-) и молекула воды, которая уходитв сок. Всем этим процессом в растении управляет вещество, которое называетсяауксин; но как это происходит, в настоящее время не ясно. Кислородная связьмежду кольцами cахаров все-таки остается уязвимым звеном в целлюлозноймолекуле, которая может достигать в длину нескольких сотен глюкозных ячеек.Именно эта связь разрушается с помощью ферментов в желудках жвачных животных,благодаря чему они могут усваивать целлюлозу; она же разрушается, когда деревоатакуют различного рода грибки. Та же связь рвется под воздействием простыххимикалиев; так разрушает ее отбеливающий порошок, используемый в прачечных,что оказывается причиной постепенного старения и износа рубашек после многихстирок[36].
Длинные целлюлозные цепочки откладываются в стенках клеток более или менеепараллельно клеткам или волокнам, то есть, можно сказать, в направленииприложенной нагрузки. Процесс роста целлюлозы в целом весьма примечателен.Обычное дерево в возрасте нескольких лет имеет ствол с несколькими отходящимиот него небольшими веточками. Каждая из этих веточек по существу представляетсобой консольную балку, изгибаемую собственным весом (глава 1). Это значит, чтоверхние слои веток нагружены растяжением, а нижние- сжатием. Сук становится все толще и длиннее, а стало быть, и тяжелее, поэтому напряжения в верхних и нижних волокнах, в том месте где сук выходит изствола, увеличиваются. Как и ствол, ветка растет: с каждым годом на ееповерхности под корой слой за слоем откладывается новый материал. Если быочередной слой откладывался каждое лето в свободном от механических напряженийсостоянии, то ветка, или балка, провисала бы все больше и больше, и все деревьядолжны были бы уподобиться плакучей иве. Однако с большинством деревьев такогоне случается. Сучья растут примерно под одним и тем же углом к стволу в течениевсей жизни дерева, так что молодое деревце можно считать геометрически подобнымвзрослому дереву. Так получается потому, что у большинства пород новаяцеллюлоза откладывается уже во вполне определенном напряженном идеформированном состоянии.
Работая с гидрохиноном и другими довольно простыми растворимыми веществами,я выращивал длинные игловидные кристаллы, усы (глава 3), которые утолщались путем как бы натягивания на поверхность новыхслоев материала, что геометрически похоже на растущие слои в дереве. Исходныеусы, тонкие волоконца, часто были в высшей степени изогнутыми, и можнобыло заметить, что растущие слои оказывали на них сильное выпрямляющеевоздействие, отчего волнистые зародыши, вырастая до миллиметровой толщины,всегда становились очень прямыми. Отсюда ясно, что растущие слои этих кристалловформировались под значительным механическим напряжением и эти напряжениявыпрямляли волокна. Подобные явления встречаются довольно часто в простыхнебиологических системах, в этих случаях ни о каких дополнительных управляющихвеществах или биологических механизмах и речи быть не может. Мы могли быпоэтому предположить, что прямой, без провисания рост ветки идет под механическимнапряжением тоже без участия какого-либо биологического механизма. Но невсе растения ведут себя подобным образом, и с помощью прививки можно заставитьнормально растущее дерево стать похожим на плакучую иву. Есть предположения,что ауксин, управляющий синтезом целлюлозы, под действием тяжести концентрируетсяв нижних слоях ветки и, следовательно, внизу целлюлозы откладывается больше.Мне кажется, однако, что это далеко не полный ответ.
Целлюлозные цепочки всегда представляют собой простые нитевидные молекулы,которые не переплетаются с соседними нитями путем образования кислородныхсвязей на боковых сторонах сахарных колец, как это делают другие болееслабые полисахариды, например крахмал. Растительная клетка имеет формутрубки, стенки которой образованы длинными, уложенными приблизительно параллельнонитевидными молекулами целлюлозы. В природной целлюлозе имеются области,где молекулы-цепочки уложены идеально в параллельные пряди-кристаллы, ониудерживаются в таком порядке с помощью гидроксильных связей по боковымсторонам молекул. Такие образования можно считать вполне добротнымикристаллами с той удивительной особенностью, что они короче образующихих молекулярных цепочек (рис. 38). Каждый такой кристаллит заканчиваетсяпучком распушенных цепочек, напоминающим по форме помазок для бритья, вкотором волоконца уже не очень параллельны. Молекулы могут в дальнейшемвновь собраться в параллельный пучок и образовать новый кристаллит, такчто одна молекула иногда тянется через несколько кристаллитов.
Рис. 38. Кристаллически-аморфная структура целлюлозы
Итак, кристаллические области образуются с помощью гидроксильных групп,которые избавились от плотно прилегающих к ним молекул воды; такая жесткаякристаллическая система оказывается недоступной для воды. Мы знаем обэтом по рентгеновским измерениям: когда целлюлоза набухает в воде, расстояниямежду молекулами в кристалле не изменяются. С другой стороны, целлюлозаочень интенсивно притягивает жидкость и атмосферную влагу, и это с инженернойточки зрения ее самый большой порок.
Доля кристаллического материала в натуральной целлюлозе может бытьочень различна, но в среднем она составляет 30-40%. Некристаллическая,то есть аморфная, целлюлоза не имеет никакой защиты своих гидроксильныхгрупп от влаги, Поскольку большинство этих групп со своими соседями жестконе связано, они подхватывают любую доступную им молекулу воды, образуявокруг себя водную оболочку. Это, естественно, снижает взаимное притяжениегидроксилов. Силы, сохраняющие целостность клеточной стенки в боковом направлении,падают, и клетка разбухает. Целлюлоза полностью не переходит в растворотчасти благодаря большому размеру своих молекул, а главным образом потому,что система в целом механически связана присутствием кристаллических областей,непроницаемых для воды и составляющих значительную часть общей массы. Такназываемая “регенерированная целлюлоза”, целлофан, получается путем растворениянатуральнойцеллюлозы химическими методами, разрушающими кристаллиты. Затем полученныйраствор осаждается, образуется прозрачная пленка, состоящая в основномиз перепутанных отдельных молекул и намного меньшей доли кристаллитов.Намокая, такая пленка становится очень рыхлой и теряет всю свою прочность;целлофан может использоваться в качестве оберточно-упаковочного материала(это его основное назначение) лишь потому, что на него с двух сторон нанесенаочень тонкая непроницаемая для воды лаковая пленка. Однако после продолжительногозамачивания материалы такого типа становятся безнадежно слабыми, в то времякак натуральная целлюлоза сохраняет довольно большую часть своей прочности.
Используемые нами натуральные сорта целлюлозы - это древесина, бамбук,тростник, лен, конопля, хлопок, рамп, сизал, эспарто и т.д. Однако, каки следует того ожидать, их механические свойства, и особенно разбуханиев воде, зависимость прочности от температуры и содержания влаги отличаютсялишь в деталях. Общая же картина для всех целлюлоз одинакова.
Свойства древесины
Как различны форма и размеры деревьев, так по-разному выглядит и древесина.Однако эти более или менее внешние признаки не столь важны, основное, чтоотличает разные типы древесины, это их плотность. Так, плотность выдержаннойпробки от 0,08 до 0,16 г/см3, ели - около0,5 г/см3, дуба - примерно 0,8 г/см3,гваякового дерева - 1,1-1,3 г/см3. Химическоеже строение вещества любой древесины примерно одинаково (с небольшими видоизменениями),как приблизительно одинакова и его плотность, около 1,45 г/см3(что очень близко к плотности сахара).
Древесина состоит из большого числа трубчатых ячеек - волокон, плотноприлегающих одно к другому. Чтобы их разделить, обычно приходится прибегатьк довольно крутым мерам, как это, например, делается в производстве бумаги.У различных пород деревьев существуют небольшие различия в геометрическомрасположении волокон. Например, некоторые породы (в частности, дуб) содержаткакое-то число волокон, бегущих по радиусу от центра ствола и пересекающихпродольные волокна под прямым углом. Но с инженерной точки зрения любуюдревесину можно считать пучком параллельных трубок. Поскольку материалэтих трубок по существу для всех пород одинаков, плотность отдельных породзависит от толщины стенок труб. В результате оказывается, что в первомприближении большинство механических характеристик древесины пропорциональноее плотности: древесина, в два раза более плотная, будет и вдвое прочнее.Это не абсолютно точно, но приблизительно верно.
Вещество древесины состоит процентов на шестьдесят из целлюлозы. Кромецеллюлозы, оно содержит различные другие соединения типа сахаров и лигнин,вещество, похожее на смолу, которое пропитывает взрослое дерево какими-тосокровенными путями. Не пропитанная лигнином древесина имеет весьма однонаправленнуюструктуру и поэтому обладает свойством двойного лучепреломления, то естьона поворачивает плоскость поляризации поляризованного света. Кроме того,она ярко окрашивается определенными красителями.
Ни тем, ни другим свойством нормальная древесина, содержащая лигнин,не обладает. Но непосредственно перед механическим разрушением, когда ещеникакие механические методы не обнаруживают признаков близкого разрушения,древесина получает свойство двойного лучепреломления и легко окрашиваетсяхарактерными красителями. По-видимому, причина этого кроется в каком-тонеобратимом разрыве химических связей между целлюлозой и лигнином, вызванноммеханическим напряжением. Однако использовать это явление как сигнал скорогонеизбежного разрушения конструкции нельзя, потому что наблюдать его можнолишь под оптическим микроскопом на тонких сечениях, вырезанных из нагруженнойчасти. Но оно может оказаться весьма полезным при расследовании причинаварий. Кроме того, это наглядно показывает, сколь хитро устроила природавещество древесины.
В этой связи интересно еще упомянуть, что некоторые тропические породы,такие, как тик и гринхарт, содержат небольшие количества токсических веществи кремнезема. Они защищают древесину от насекомых и гниения, но в то жевремя являются причиной высокой стоимости обработки лучших тропическихпород: кремнезем очень быстро тупит инструмент, а щепки гринхарта ядовиты.
Механические свойства древесины в основном не отличаются от свойств,которые можно ожидать от пучка трубок или волокон. В боковом направленииволокна разделяются и сминаются довольно легко, поэтому прочность на разрыви сжатие поперек волокон очень невелика, меньше 1 кГ/мм2.Более легкие породы, например пробку, можно даже сминать пальцами. С другойстороны, как раз потому, что трубчатые волокна легко сминаются, в древесинуможно загонять гвозди и шурупы, не расщепляя ее (если, конечно, проделыватьэто, соблюдая определенную аккуратность). Между прочим, гвозди, достаточноосторожно вбитые в дерево, и ввернутые в него шурупы сколько-нибудь заметноне ослабляют древесину как целое; иными словами, дерево удивительно стойкок концентрации напряжений.
Прочность на разрыв ели составляет около 12 кГ/мм2.Она соответствует упругой деформации или межатомному разделению порядка1%, то есть находится где-то между 1/10 и 1/20 теоретической прочности.Это намного лучше, чем тот же показатель для большинства других техническихматериалов, особенно дешевых. Ходовая сталь с прочностью 40 кГ/мм2упруго удлиняется на 0,15%. Если соразмерять все характеристики с удельнымвесом, то по прочности на разрыв древесина эквивалентна стали с прочностью200 кГ/мм2, которая в 4-5 раз прочнее обычноиспользуемых сталей. Но как мы увидим дальше, на практике не так-то легкоэффективно использовать высокую прочность древесины на разрыв.
Древесина оказывается слабой при сжатии вдоль волокна. В этом отношенииее свойства противоположны свойствам чугуна, который прочен при сжатии,но слаб при растяжении. Здесь опять модель пучка склеенных между собойволокон оказывается очень реалистичной.
Под сжимающей нагрузкой тонкая стенка одной из трубок теряет устойчивость,на ней образуется складка, а все остальные трубки должны следовать за ней(рис. 39). Прочность на сжатие ели обычно лежит в пределах 3,0- 3,5 кГ/мм2.Если сравнивать эти цифры со сталью по удельной прочности (по отношениюк плотности), то они выглядят все еще вполне сносно, но, конечно, далеконе так, как удельная прочность на разрыв.
Рис. 39. Разрушение древесины при сжатии. На чистой плоской поверхности,параллельной направлению волокон, место разрушения видно невооруженным глазом.Здесь бегут «складки» под углом 45° к направлению волокон.
Когда древесина начинает разрушаться от сжатия, можно видеть легкуюлинию складок на волокнах, бегущую под углом 45° к направлению волокон,но рассмотреть ее целиком довольно трудно: для этого нужно иметь чистуюповерхность и знать, что и где искать. В течение некоторого времени посленачала разрушения (складкообразования) ничего особенно сенсационного иликатастрофического не случается, материал лишь постепенно проседает. Посколькудревесина чаще всего нагружается изгибом, то в результате медленного разрушенияна сжатой стороне балки нагрузка передается на растянутую сторону. Поэтомуноминальное напряжение в изогнутой балке перед окончательным разрушениемможет быть вдвое больше прочности на сжатие. Это обстоятельство делаетдеревянные конструкции очень надежными.
Древесина в некотором смысле вещь довольно зловредная: прежде чем появитсяреальная опасность разрушения, деревянная конструкция может немало потрепатьвам нервы пугающими звуками. Планеры не имеют двигателя (они часто запускаютсяканатом примерно километровой длины, который наматывается на барабан лебедки),поэтому в полете - абсолютная тишина, нарушаемая лишь свистом ветра. Ивот при быстром резком запуске деревянный планер будет пугать вас скрипами,тяжелыми вздохами, иногда даже грохотом. Это, естественно, встревожит вас,но скоро вы поймете, что все это притворство и никакой опасности разрушенияконструкции нет. Такое представление может повторяться несколько раз надню. Я почти уверен, что эти шумы не сопровождают процесса разрушения присжатии. Часто я задавался вопросом, откуда они исходят, но, должен сознаться,никаких идей на этот счет у меня не появилось. Можно сказать одно - есливы слышите деревянную конструкцию, вряд ли вы ее сломаете.
Итак, по удельной прочности древесина вполне конкурентоспособный материал.Но одной лишь прочности практике недостает, ей нужна еще и соответствующаяжесткость: вещества вроде нейлона прочности имеют предостаточно, но дляинженерных сооружений жесткость их слишком мала. Модуль Юнга для ели составляетпримерно 1000-1500 кГ/мм2, жесткость других-пород более или менее пропорциональна их плотности. Удивительно, но удельныймодуль Юнга для древесины почти в точности равен удельному модулю сталии алюминия и намного больше, чем у синтетических смол. Такая жесткостьвместе с малой плотностью делает дерево очень подходящим материалом длябалок и колонн. Мебель, полы, книжные полки, флагштоки, мачты парусниковлучше всего делать деревянными. В Америке в XIX веке очень быстро и дешевобыло построено много железных дорог, отчасти это случилось благодаря высокойэффективности. железнодорожных мостов на деревянных эстакадах. Вместе сэтими достоинствами древесина, однако, обладает недостатком - она ползет.Это означает, что при достаточно длительной нагрузке материал постепеннодеформируется. Следствие ползучести - вогнутые деревянные крыши старыхдомов и сараев. Из-за ползучести древесины нельзя оставлять надолго натянутымидеревянный лук или струны скрипки. По-видимому, причина ползучести состоитв том, что плохо закрепленные гидроксильные группы аморфных областей целлюлозы,пользуясь изменениями температуры и влажности, увиливают от своих обязанностей.Маловероятно, чтобы сколько-нибудь заметно ползла кристаллическая целлюлоза.
Разбухание
Несомненно, природа при желании могла бы химически соединить молекулыцеллюлозы вдоль “боков”. Но тогда они были бы увязаны между собой оченьнадежно, и материал имел бы примерно одинаковую прочность во всех направлениях.Как мы уже видели в предыдущей главе, наличие слабых плоскостей, параллельныхпрочнейшему направлению, является, по-видимому, условием прочности и вязкостидля материалов такого типа. Если бы такие поверхности отсутствовали, древесинапоходила бы на глыбу сахара - была бы однородной, но непрочной и хрупкой.Если судить по удельному весу древесины, то нет ничего плохого в ее механическихсвойствах. Обычно вес деревянных конструкций сравним по крайней мере свесом сооружений из металла. Плохо в древесине другое - она подверженавоздействию влаги. Вода может попадать в древесину под дождем, в реке,в море и т. д., но хуже всего то, что на древесину действует атмосфернаявлага.
При каждой данной температуре воздух может содержать определенное количествовлаги. Любой избыток влаги выпадает в виде дождя, тумана, дымки или росы.Воздух в этом случае называется пересыщенным, и, следовательно, относительнаявлажность в сырой день равна примерно 100%. В сухую погоду или в помещенииотносительная влажность меньше, но она редко падает многим ниже 30%, дажев местах с сухим жарким климатом.
Древесина всегда стремится быть в равновесии с относительной влажностьюокружающего воздуха. После длительной выдержки во влажном воздухе древесинаможет содержать 22-23% воды. В очень сухом воздухе содержание влаги в деревеможет упасть до 5%. Однако связанные с этим колебания веса материала имеютвторостепенное значение по сравнению с влиянием влажности на свойства древесины,в частности на ее усадку или разбухание. Каждый процент изменения влажностидает около половины процента усадки или разбухания. Обычные колебания влажностивоздуха могут вызвать колебания поперечных размеров от 5 до 10%, то естьдо 1 см на доску шириной 10 см. И если плотники-любители, располагая выбором,предпочтут использовать широкие доски, то профессионалы будут мудрее: онивозьмут узкие доски, чтобы уменьшить перемещения в каждом отдельном стыке.Конечно, 5-10% усадки или разбухания не так уж часто случаются, но и 1-2%могут вызвать много неприятностей. Краски и лаки снижают колебания влажностив дереве, но не исключают их, так как нет красок, совершенно не проницаемыхдля паров воды.
Даже в помещении относительная влажность непрерывно изменяется, особенно междудневным и ночным временем. Полы и мебель “следят” за влажностью воздуха, аотсюда - скрипы и треск по ночам. Если каким-то образом удержать древесину отусадки при уменьшении влажности, она будет расщепляться: ведь она почти неимеет прочности на разрыв поперек волокон. Если геометрически ограничитьвозможность древесины разбухать, то при увеличении влажности может возникнутьвесьма значительное давление. Египтяне использовали это давление дляоткалывания огромных глыб в каменоломнях, так была получена иглаКлеопатры[37].
Предварительно форма будущего куска размечалась канавкой на поверхности,эта же канавка служила концентратором напряжений. Затем вдоль канавки долбилисьглубокие отверстия, в которые загонялись сухие деревянные колья. Их заливаливодой, и, пропитавшись влагой, дерево раскалывало камень вдоль требуемойлинии.
Усадка морских канатных снастей и парусной ткани - в принципе то жесамое. Отдельные волокна с изменением влажности изменяют не длину свою,а толщину, а остальное делает геликоидная геометрия каната и текстильнойпряжи: веревки и одежда, намокая, становятся короче. Льняные паруса былиособенно пористыми, и, чтобы уменьшить пористость, их замачивали.
Итак, мы видим, что самым важным следствием воздействия влажности надревесину является ее разбухание. С практической точки зрения влияние влажностина механические свойства, пожалуй, менее существенно. До предела намоченноедерево сохраняет примерно третью часть прочности и жесткости совершенносухого дерева. Биологические материалы всегда работают в насыщенном состоянии- таким образом, ценою потери прочности снимается проблема усушки и разбухания.В технике целлюлоза никогда не используется в идеально сухих условиях,поэтому величины прочности и жесткости ее совсем не так плохи, как иногдаэто может показаться,
Сырую древесину гнуть немного легче, чем сухую; но больше всего облегчаетгибку дерева нагрев. Так, прежде чем гнуть древесину для теннисных ракетокили шлюпочных шпангоутов, ее пропаривают. Часто считают, что пар делаетс древесиной что-то особенное. Это неверно, просто пропаривание - всеголишь удобный путь нагрева древесины без ее высушивания, и механизм действияздесь в точности тот же, какой используют парикмахеры для завивки волос.Иногда древесину перед гибкой оборачивают влажными горячими тряпками. Этаоперация помогает термической изоляции древесины, сохраняет ее тепло, предохраняетот слишком быстрого охлаждения. Древесина может без особого для себя вредавыдержать “влажный” нагрев примерно до 140°С, однако сухой нагрев, конечно,вызовет растрескивание вследствие усушки.
Выдержка древесины
Можно услышать довольно много вздора, о так называемой выдержке древесины.Об этом любят толковать старые мастера и романтичные, но несведущие любители.Древесина, как мы уже знаем, состоит из закрытых трубок, которые в живомрастении частично заполнены водой или, точнее, соком. В свежесрубленномдереве содержание воды может быть различным, оно может даже превышать повесу количество сухого вещества. Примерно 25% этой воды абсорбировано,притянуто гидроксильными группами к стенкам волокон, остальная жидкостьсодержится внутри клеток. Во время выдержки большая часть воды удаляется.Выдержка в основном представляет собой операцию сушки и ничего более. Простосодержание влаги в дереве приводится к условиям, примерно равновесным сусловиями окружающей среды, в которых ему предстоит работать: если этогоне сделать, то изделие всегда будет под угрозой коробления от усушки. Дляиспользования под открытым небом приемлема влажность 20%, для неотапливаемыхпомещений - около 15%, а для помещений с паровым отоплением - примерно8-10%.
Клетки дерева представляют собой закрытые веретенообразные трубки, поэтомузаключенной внутри них воде не так-то легко выйти наружу. Единственнаявозможность - медленное проникновение воды через стенки трубок. Такой процессне представляет трудностей, если иметь дело с единичной клеткой. Но ведьбревно содержит многие тысячи таких клеток, и вода из внутренних клетокдолжна просочиться через стенки большинства других клеток, лежащих на еепути наружу. Для этого необходимо поддерживать разницу влажностей междувнутренним объемом древесины и окружающей средой. Чем больше эта разница,тем быстрее будет удаляться влага. С другой стороны, при слишком резкомперепаде влажности наружные слои в ходе сушки окажутся заметно суше внутренних,будут больше сжиматься и, следовательно, расщепляться и растрескиваться.Поэтому, чтобы не повредить древесину, ее нельзя сушить слишком быстро.Традиционный способ выдержки - на открытом воздухе или под навесом. Присушке таким путем для досок толщиной 20-50 мм требуется около года, а длякрупных дубовых заготовок для судов - около семи лет. С примитивными методамии знаниями ничего другого и не придумаешь, В былые времена лучшие судоверфии хорошие каретники держали залежи ценной древесины, уже выдержанной илинаходящейся в процессе выдержки - это было одной из причин высокой стоимостиих изделий.
В последние годы было предпринято много технологических исследованийпо выдержке лесоматериалов, в результате разработан ряд способов ускореннойбезопасной сушки для древесины всех сортов и размеров. Тщательный контрольскорости сушки в больших сушильных печах позволяет свести время процессак дням и неделям. Другой путь, также сокращающий время сушки,- современнаятенденция применять пиломатериал меньших сечений, используя надежные клеи.Древесина, которая подобающим образом сушилась в печах (печи эти довольнодороги и требуют квалифицированного обслуживания), нисколько не хуже “натурально”выдержанной. Более того, в процессе сушки для нее менее вероятно подхватитьгрибковую инфекцию.
Содержание влаги в дереве можно определить путем взвешивания небольшогообразца до и после печной сушки. В промышленности процент влажности определяетсяпортативными приборами, которые измеряют электрическое сопротивление междудвумя вбитыми в бревно иглами. Такая процедура дает ответ намного быстрее.
Если содержание воды в древесине меньше 25%, то вся она связана с гидроксильнымигруппами в стенках клеток. Когда влажность достигает примерно 25%, гидроксилыоказываются насыщенными и стенки клеток не могут больше принимать воду;в таком случае говорят, что достигнута точка насыщения волокон. До этойточки полости клеток остаются пустыми, выше нее практически вся добавочнаявлага идет на заполнение трубчатых клеток. Все изменения размеров и механическихсвойств, обусловленные колебаниями влажности, проявляются только ниже точкинасыщения волокон, то есть между 0 и 25% влажности. По достижении точкинасыщения никакого дальнейшего разбухания не происходит, и добавочная водапросто увеличивает, причем весьма заметно, вес древесины.
Удельный вес вещества дерева около 1,45 г/cм3,однако свежесрубленное дерево в воде не тонет (за исключением очень тяжелыхпород), потому что даже в невыдержанной древесине очень много воздуха.Но если оставить дерево в воде, то, пропитавшись водой, оно в конце концовзатонет, хотя для этого и потребуется, как и в случае естественной сушки,довольно много времени. В свое время экипаж “Кон-Тики” беспокоило, какповедут себя в плавании пробковые бревна плота, хотя скорость их пропиткине была очень высокой. Американские клиперы середины прошлого века с тремявпившимися в небо мачтами, сделанные из легкого, “мягкого” дерева, пропитывалисьводой, не прослужив и десяти лет. Однако за годы службы они, вне всякихсомнений, сполна окупали себя. Твердая древесина, которая обычно шла напостройку английских кораблей, была гораздо более водостойкой: можно привестинесколько примеров, когда деревянные суда служили больше столетия.
Разложение древесины
Гниение древесины вызывается грибком, который паразитирует за счет целлюлозы:грибки вообще не имеют хлорофилла и не могут производить для себя сахарпутем фотосинтеза. Споры различных грибков практически всегда имеются надереве, подобно тому, как многие болезнетворные микробы живут в организмечеловека, оставаясь пассивными до той поры, пока не наступят подходящиеусловия. Болезнь дерева, гниение не может развиваться при влажности меньше18%, хотя споры сохраняют жизнеспособность в довольно сухой древесине,дожидаясь дождливого дня. Однако и при влажности выше 18% грибок еще нерастет, если обеспечена хорошая вентиляция. С другой стороны, если влажностьбудет около 15%, то нужно совсем немного затхлости в каком-нибудь невентилируемомуглу, чтобы началось гниение. Контролировать влажность древесины удаетсяне всегда, но всегда можно обеспечить хорошую вентиляцию, и это будет гарантироватьсохранность конструкции.
Сейчас существует много химикатов, убивающих активные споры и грибокв древесине, но их не всегда удобно применять в старых и сложных строениях:до пораженных частей не доберешься без дорогостоящей разборки конструкции.Однако почти всегда можно позаботиться об эффективной вентиляции.
В кругообороте веществ в природе некоторые процессы разложения оченьсущественны; не будь их, Земля не только была бы завалена стволами ранееживших на ней растений, но и все земные запасы углерода оказались бы связаннымив целлюлозе - жизнь не могла бы продолжаться. С этим связано главное возражениепротив использования биологических материалов человеком: “планы” природыотносительно отживающих организмов могут вступить в конфликт с нашими намерениями.
Деревянные суда
Деревянный парусник обеспечил в свое время экспансию Запада и потомуболее, чем какой-либо другой продукт техники, определил сегодняшние условияв нашем мире. Деревянные парусники открывали новые земли, они делали картуЗемли. Они перевозили пассажиров и войска, эмигрантов и каторжников, путешественникови рабов. На них грузили золото и уголь, станки и книги, чай и шерсть, хлопоки дешевую жесть. Они везли это не только за тридевять земель, но и вдольпобережья, по рекам. Многие сотни лет военный корабль был самым вескимаргументов королей, которые часто пускали его в ход.
Деревянные корабли - отнюдь не дела давно минувших дней, на памяти нашегопоколения существовали первоклассные пассажирские парусные суда, плававшие вАвстралию[38].Живы адмиралы, которые начинали службу на деревянных парусниках.
Хотя примерно в середине прошлого века как корпуса, так и оснастка судовбыли значительно усовершенствованы, в течение предшествующих трех-четырехстолетий основные принципы конструирования оставались неизменными. Ониопределялись двумя факторами: разбуханием древесины и высокой стоимостьюметаллов.
Несущая конструкция большого корабля делалась из естественно изогнутойдревесины, для таких элементов как шпангоуты, выбирались стволы деревьев,на корню принявших подходящую форму. Водонепроницаемая обшивка и палубанакладывались поверх частой решетки шпангоутов и продольных балок примерноквадратного сечения, пересекающихся со шпангоутами под прямым углом. Этарешетка не имела диагональных связующих элементов, способных восприниматьсдвиг. Кромки примыкающих одна к другой планок обшивки не связывались междусобой механически, зазор между ними имел форму V-образной канавки. В этуканавку с помощью специального конопаточного зубила и деревянного молотказагонялась пакля, которую делали из отслуживших свое канатов обитателитюрем и работных домов.
Поверх пакли между планками оставался открытый зазор шириной примерно1 см. На палубах его заливали потом с помощью специального черпака горячейсмолой. После того как смола застывала, ее излишки легко соскребались -в холодном состоянии смола становится достаточно хрупкой. В итоге палубарасчерчивалась изящными черными линиями. Для днища и боков судна использоваласьспециальная замазка. Смысл всех этих операций заключался в том, чтобы заставитьпаклю компенсировать усушку и разбухание деревянной обшивки, а также -в некоторой степени - деформацию корпуса без заметного нарушения герметичности.
Вся конструкция была - в известной мере это делалось умышленно - довольногибкой, вроде большой корзинки. Вероятно, не без оснований считалось, что,кроме компенсации усушки и разбухания древесины, такая гибкость корпусавносила свой вклад в скоростные качества и добротность корабля. По-видимому,суда викингов и полинезийские каноэ были еще менее жесткими. Уже в викторианскиевремена, когда корабли комбинированной конструкции стали намного жестче,было специально построено несколько гоночных клиперов с корпусами, жесткостькоторых можно было изменять по желанию. Об одном из таких судов, когдаоно вырывалось вперед, в экипажах соперников шутили: “Они там развинтилиболты, и мы их уже никогда не увидим”.
В гаванях деревянные суда были, как правило, водонепроницаемыми, новсе они, без исключений, начинали течь, когда выходили в море. Иногда течьбывала незначительной, а порой грозила опасностью. Несмотря на вековойопыт, корабельных дел мастера никак не могли, кажется, понять, что такоесдвиг. Любая конструкция типа оболочки, подвергнутая изгибу и кручению,претерпевает значительные сдвиги в обшивке, а ведь этому как раз и подвергаетсякорабль в море, особенно парусник. Но традиционная корабельная конструкциябыла подобна раме ворот без диагональных брусьев.
Поскольку в конструкции судна никаких специальных элементов, эффективновоспринимающих сдвиг, не было, он воспринимался все той же паклей, котораяпопеременно то сжималась, то возвращалась в прежнее состояние, подобногубке. Время от времени (правда, на удивление редко) плывущий корабль выплевывалшпаклевку из какого-нибудь подводного шва. Случалось, что судно после этоготонуло. Однако чаще оно начинало течь и текло, текло… В этих случаяхопасность была не столько в том, что корабль немедленно затонет, скольков том, что непрерывная откачка воды измотает силы команды, доведя матросовдо такого состояния, при котором может случиться все что угодно.
Когда ситуация грозила катастрофой, можно было попытаться “подпоясать”корабль, обвязав его с помощью тросов, пропущенных под корпусом, подобнотому как об этом сказано в Новом Завете. С тех пор эта уловка повторяласьмного раз, и очень может быть, что именно сейчас где-нибудь в океане еепроделывают с каким-нибудь суденышком. Смысл этой операции заключаетсятолько в одном - снабдить корпус судна воспринимающими сдвиг элементами.Но пока она не будет выполняться со знанием дела и точностью, которые,пожалуй, невероятны в подобных обстоятельствах (например, следует направитьтрос под углом примерно 45° к оси судна), она, надо думать, будет не болееуспешной, чем на корабле “Св. Павел”.
Что касается британского военного флота, то основные неприятности стечами кончились где-то около 1830 года, когда Роберт Сеппингс (1764-1840)предложил делать в деревянных корпусах кораблей железные диагональные крепления,Сеппингс, который часто приговаривал, что “частичная прочность приводитк общей непрочности”, был, вероятно, одним из первых кораблестроителей,понявших картину напряженного состояния корабельного корпуса. В торговомфлоте деревянные корпуса были в основном заменены комбинированными и металлическимиконструкциями лишь во второй половине прошлого века. Однако продолжалистроиться и деревянные суда без соответствующего укрепления корпуса противнапряжений сдвига. Старея, такие суда текли все больше. Они текли, а ихэксплуатировали, пока это было экономически выгодным в условиях почти исключительноручной откачки. Между прочим, вплоть до 1914 года норвежские судовладельцыпокупали английские парусные суда и эксплуатировали их с ветряными помпами.
Несмотря на недостатки, деревянные военные парусники находились на вооружениифлотов на протяжении трех-четырех веков, и адмиралтейства расставалисьс ними с сожалением, так как эти корабли были по-своему очень эффективныи экономичны. Они имели хороший радиус действия, были выносливы, независимостьот морских баз позволяла им бесследно исчезать в океанских просторах -все эти достоинства флоты обрели вновь лишь недавно, с приходом атомныхподводных лодок.
Активные действия флота случались не часто, угрозой был сам факт егосуществования. Однако до середины XVIII века считалось непрактичным круглый годдержать флот в море, так как зимой корабли быстрее портились. Правда, усилиямипреданных своему делу офицеров эти трудности преодолевались. Каждому, ктознаком с характером побережья, парусными судами и молекулой целлюлозы,длившаяся круглый год блокада Бреста и Тулона должна показаться почтиневероятной. “Эти стоящие вдали избитые штормами корабли, которых Великаяармия никогда не видела, стояли между нею и мировымгосподством”[39].
Канаты и рангоуты балтийского происхождения доставляли морякам блокирующихсудов много хлопот. И хотя французов они видели очень редко, им приходилосьсражаться денно и нощно, их врагами были канаты, паруса, реи, которые вытягивались,гнили, рвались. Адмирал Нельсон писал: “Ко мне обращались с разных кораблейс жалобами на большую часть парусов и оснастки, но просьбы о замене выполнитьбыло невозможно, так как в запасе был лишь такой же непригодный к службехлам. Надо было искать другие пути борьбы с этим злом”. И все же “двадцатьдва месяца флот Нельсона не заходил в порт, - и, когда в конце концов возникланеобходимость преследовать неприятеля четыре тысячи миль, корабли оказалисьво всех отношениях готовыми к этому неожиданному и столь далекому походу”.
Когда парусное судно идет при крепком попутном ветре будь это даже шторм,нагрузки в оснастке не слишком велики. Однако, когда корабль бросает изстороны в сторону на его пути против ветра, общая нагрузка в тросах накоторых держатся мачты, может достигать нескольких тысяч тонн. Вплоть досередины XIX века вся эта нагрузка, эквивалентная весу многих железнодорожныхсоставов, приходилась на долю пеньковых канатов, которые всегда подверженыразбуханию и усушке, вытяжке и гниению, поэтому требовалось большое искусстводля того, чтобы не лишиться нескольких - а того и гляди, всех - мачт игренгоутов. Понятно, что моряки всегда стремились избегать длительных походовнавстречу ветру в бурную погоду. Пройти, например, мыс Горн всегда былогораздо опаснее, чем следовать знакомой дорогой к восточному побережьюАмерики или даже в Индию. Известен случай, когда экипаж (то был экипажкапитана Блая на корабле “Баунти”), взбунтовавшись, отказался повторятьпопытку обогнуть злополучный мыс: после первой попытки корабль едва неразнесло в щепки. В конце концов Блай должен был повернуть назад, держакурс в прямо противоположном направлении, в Тихий океан, вокруг Земли.Блай был превосходным моряком, и если уж он не преуспел здесь, то врядли кто-нибудь другой смог бы добиться успеха.
На английских военных кораблях металлические тросы для оснастки началииспользовать с 1838 года. В торговом флоте стальные канаты внедрялись оченьмедленно (этот процесс продолжался до 60-х годов прошлого века), потому что какраз в это время была усовершенствована технология скрутки пеньковых канатов:механическая скрутка делала канаты более плотными, отчего они значительноменьше вытягивались. Появление лучшей оснастки случайно почти совпало соткрытием золота в Калифорнии. Около половины эмигрантов и все тяжелые грузыбыли доставлены туда морем. В те годы быстроходные парусники могли пройти путьот Нью-Йорка до Сан-Франциско за сто дней. В 1849-1850 годах 760 парусных судовобогнуло мыс Горн, провезя 27 тысяч пассажиров. Трудно определить, какая частьэтих судов была оборудована стальными канатами, а какая - пеньковыми, яснотолько, что покорение американского Запада во многом обязано улучшеннымтросам[40].
Еще одним не менее важным шагом вперед явилась якорная цепь. Пеньковыйкабельный трос имел определенные достоинства, однако для его хранения требовалосьособое место на судне; весьма впечатляют громадные вентилируемые бухтына корабле “Виктория”. Цепь, которая появилась на судах в 1811 году, моглахраниться в небольших сырых помещениях; можно сказать, что цепь освободиламесто для машин и угольных бункеров.
Во времена малых скоростей, когда Новый Свет еще не имел судоверфей, серьезнуюпроблему составляло обрастание днища судна растительностью и разрушениедревесины животными-вредителями. Однако она была в основном решена меднойоблицовкой корпуса (примерно 1770 год). Это было самым крупнымусовершенствованием XVIII века, увеличившим скорость и радиус действия судов, инастолько успешным, что судовладельцы впоследствии были весьма резко настроеныпротив использования железа для корабельных корпусов - железо нельзя покрыватьмедью непосредственно из-за электрохимического взаимодействия между двумяметаллами в соленой воде. Иногда железные корпуса обшивались деревом, а ужепотом покрывались медью. Чаще других так строили корпуса военных кораблей, ноконструкция получалась тяжелой. Много лучших быстроходных парусников имелокомбинированный корпус. “Катти Сарк” (1869 год) была обшита тиком, обшивкаболтами крепилась к железному каркасу с соответствующими подкреплениями противсдвига. Днище корабля было покрыто сплавом типа латуни, мунтц-металлом.Некоторые специалисты считают такую конструкцию наиболее совершенной для судовсредних размеров. Вполне возможно, что это так, но она, к сожалению, еще иочень дорога.
Рис. 40. Клипер "Великая Австралия"
Подешевление чугунных и стальных плит в 70-х годах прошлого века сделалопостройку комбинированных корпусов неэкономичной, и к концу столетия большаячасть морского грузооборота уже приходилась на большие парусные суда почтистандартной конструкции со стальными корпусами, стальными палубами, стальнымирангоутами, стальной оснасткой. Такие суда были полностью герметичными,их мог обслуживать небольшой экипаж. Несколько меньшая скорость из-за болеегрубого днища компенсировалась возможностью идти под парусами в плохуюпогоду. Столетиями моряки привыкали лелеять деревянные суда, беречь их,никогда не перегружая сверх меры. Капитаны же стальных парусников считалисвои корабли неуязвимыми просто потому, что они были стальными. Немалостальных кораблей затонуло в результате таких настроений.
Пароходы не составляли большинства на флоте примерно до 1890 года. Вовсяком случае, они, как правило, использовались на более коротких маршрутах.Конечно, было построено предостаточно и деревянных пароходов, но тенденцияк переходу на сталь выявилась здесь раньше, чем в случае парусных судов.Так получилось отчасти потому, что стальной корпус лучше деревянного сопротивлялсявибрациям паровых машин того времени, а также потому, что при непрерывномдвижении и более коротких маршрутах обрастание днища было не столь сильным.Ведь наиболее интенсивно обрастает попавший в штиль парусник.
Классическая деревянная конструкция все еще используется и сегодня длярыболовных судов, минных тральщиков и яхт водоизмещением до 400-500 т.Обычно она обеспечивает минимум веса для гоночных яхт; кроме тоге, этосамая простая и дешевая конструкция яхты.
В простейших своих формах такая конструкция и сейчас страдает все темже старым недугом - недопустимые течи в плохую погоду. Этот недостатокусугубляется намного большим весом современной оснастки и, следовательно,большими нагрузками на корпус. Конечно, все это можно преодолеть мастерствоми усложнением конструкции, но тогда стоимость деревянного корпуса будетбольше, чем стального или сделанного из пластика.