Композиционные материалы, или как делать кирпичи с соломой
И пришли надзиратели сынов Израилевых и возопили кфараону, говоря: “Для чего ты так поступаешь с рабами твоими? Соломы недают рабам твоим; а кирпичи, говорят нам, делайте. И вот рабов твоих бьют;грех народу твоему”. Но он сказал: “Праздны вы, праздны; поэтому и говорите“Пойдем, принесем жертву Господу”. Пойдите же, работайте. Соломы не дадутвам, а положенное число кирпичей давайте”.
Со времен фараона, у которого были трудности с добавлением соломы в кирпичи,человек всегда использовал те или иные армированные материалы. Тем не менееособое положение как прочные материалы они заняли лишь совсем недавно.
Можно сказать почти наверняка, что добавление рубленой соломы в египетскиекирпичи преследовало ту же цель, к которой стремились инки и майя, добавлявшиев свою керамику растительные волокна: предупредить растрескивание глиныпри быстрой сушке на солнце. Египтяне не обжигали свои кирпичи, да этои не имело особого смысла, потому что вряд ли в Египте стоило опасатьсядождя. Глина во влажном состоянии образует отличную податливую массу, ноее усадка при сушке очень существенна и проблема сушки глины напоминаетпроблему выдержки древесины. Если не сушить медленно, глина будет растрескиваться.Египетское солнце сушит блестяще, но уж очень быстро, поэтому полезно добавитьнемного соломы чтобы уменьшить растрескивание. Возможно, что упрочняющеевлияние волокон на глину после сушки было лишь побочным эффектом.
Однако даже довольно малые добавки волокна оказывают существенное влияниена прочность и вязкость сравнительно хрупких непрочных материалов. Можнопривести много таких примеров. Вот один из них. Прежде у английских строителейбыл обычай добавлять в штукатурку стен немного волоса. Я помню даже, какв детстве один штукатур говорил мне, что для этой цели бычий волос гораздолучше коровьего, потому что бык, конечно же, намного сильнее коровы. Яникогда не экспериментировал ни с бычьим, ни с коровьим волосом, так чтособственной точки зрения на сей счет не имею. Но я добавлял сырую бумажнуюмассу в алебастр. Великолепные результаты этой операции показаны на рис. 45.
Рис. 45. Влияние добавки волокон на ударнуювязкость алебастра (испытание падающим шариком)
Рис. 46. Влияние добавки волокон на ударнуювязкость фосфатного цемента (испытание падающим шариком)
Очевидна очень резкая тенденция к увеличению ударной вязкости, дажесовсем небольшие добавки волокна дают весьма ощутимое улучшение. К сожалению,добавка волокон в мокрый алебастр ведет к его быстрому загустению, иногдасмесь с 2-3% волокон уже невозможно перемешать. Правда, с этим злом можнокак-то бороться, выбирая другие типы цементов и уплотняя полученную смесьпод прессом. На рис. 46 показано влияние асбестовых волокон на ударнуювязкость фосфатного цемента (этот цемент очень похож на тот, которым пользуютсязубные врачи).
Картина напоминает предыдущую с той лишь разницей, что содержание волоконв этом случае может быть большим, следовательно, возрастут и прочность,и вязкость. Во время второй мировой войны самые тяжелые потери на мореприходились на центральные районы Атлантики, где невозможно было обеспечитьприкрытие с воздуха. Покойный Джефри Пайк предложил довольно эксцентричныйвыход из положения: отбуксировать в Центральную Атлантику какой-нибудьайсберг чтобы использовать его в качестве базы для самолетов. Это былапо-своему блестящая идея, но исследования показали что механические свойстваестественного льда слишком неподходящи для ее реализации. Обычный лед оченьне прочен при растяжении, трещины в нем распространяются легко (вот почемуледоколы могут зарабатывать себе на хлеб), и - что хуже всего - прочностьльда очень не постоянна. Поэтому разбомбить или торпедировать айсберг несоставило бы никакого труда. Но даже если бы он и не подвергся нападению,чтобы служить авиабазой он должен быть настолько большим, чтобы на егодлине умещались по крайней мере две атлантические волны (во время штормаих бывает примерно 5-6 на милю) А расчеты показывали, что в этом случаеон сломался бы, как балка при изгибе.
Пайк предлагал обойти эта затруднения, добавив в лед немного древеснойпульпы. Ему удалось доказать, что около 2% обычной сырой бумажной массы,добавленной к воде перед замораживанием, резко улучшают свойства льда ивдобавок делают их более стабильными. Кривая прочности и вязкости льдав зависимости от добавок целлюлозного волокна очень похожа на кривые, показанныена рис. 45 и 46. Расчеты подтверждали, что в этом случае лед был бы достаточнопрочным и весь проект оказался бы реальным. Предполагалось добавить древеснуюмассу в воду и дать ей возможность естественным образом замерзнуть в заливеНьюфаундленда. Но с этой идеей пришлось расстаться, так как возросший радиусдействия самолетов и общая военная обстановка на Атлантике сделали ее ненужной.Пожалуй, в некотором смысле об этом стоит пожалеть.
Вообще говоря, хрупкие материалы становятся более вязкими и прочнымипри очень малых добавках волокна потому, что само присутствие волокон тормозити отклоняет трещины со своего пути. Вероятно, все это разыгрывается навнутренних поверхностях раздела. Сейчас трудно точно сказать, как это происходит,но, по-видимому, дальнейшие исследования прольют свет на механизм процесса.В той форме, о которой мы сейчас говорили, - довольно малый процент беспорядочноориентированных волокон в хрупкой матрице, - комбинированные материалыне пользуются сейчас особым спросом (возможно потому, что сегодня никомуне нужны кирпичи солнечной сушки или мобильные айсберги). Но я совсем неудивлюсь, если подобная идея, но в другом виде войдет в моду снова. В настоящееже время бытует мода на несколько иной способ использования волокон.
Те, кто работает в области волокнистых материалов, получают всякогорода доброжелательные предложения о схемах и принципах, которые следовалобы опробовать. Почти все эти советчики не учитывают того, что, если выхотите получить новый материал, способный конкурировать с довольно хорошимисуществующими материалами, необходимо в заданный объем ввести большое числоволокон. А вот здесь-то и начинаются реальные трудности.
Простые системы, о которых мы сейчас говорили, содержат примерно 2%коротких волокон, добавленных в матрицу. Такая матрица на некоторой стадиинаходится в более или менее жидком состоянии, и, чтобы ввести в нее волокна,достаточно размешать смесь ложкой. При большом содержании волокна такаяоперация оказывается на практике неудобной, процесс становится неуправляемым.Суспензии длинных тонких волокон в жидкости очень напоминают растворы,содержащие длинные тонкие молекулы. Оба типа веществ имеют тенденцию кзагустению, с которой трудно управиться, пока не изучишь все ее особенности.В производстве бумаги (из которой сделана и эта книга) бумажная масса,то есть суспензия древесных волокон в воде, разбавляется до концентрации~0,5% и именно в таком виде перерабатывается, так как все операции приэтом облегчаются.
Папье-маше
Если содержание волокна превышает примерно 2%, добавлять волокна к матрицестановится невозможным, приходится добавлять матрицу к волокнам. При этомвсе, естественно, изменяется. Почти всегда волокна плотно упаковываются,например в форме бумаги или ткани, а затем пропитываются в смоле или каком-либодругом связующем материале. Оказывается, что это тоже очень старая идея,принадлежащая все тем же египтянам. Оболочки египетских мумий, имевшиевесьма сложные формы, делались из папье-маше. Этот материал получаетсянаклейкой кусков бумаги на модель с помощью клейстера или гуммиарабика.Когда клей высыхает, оболочка снимается с формы и красится. В Египте вэтих случаях зачастую в дело шли папирусы. Когда археологи отпаривают ихпо слоям, как правило, они уже непригодны для чтения, но, тем не менее,именно этот процесс помог обнаружить небольшое, по важное направление вгреческой литературе. Видимо, только так можно надеяться восстановить работыСапфо.
Когда вышел из употребления папирус, исчезло и папье-маше. Возродилосьоно, почти без всяких изменений, уже в XVIII веке. Особенно широко папье-машеиз бумаги использовалось тогда во Франции для изготовления мебели. До самогопоследнего времени в Англии его применяли для рекламных макетов, а в войнуиз папье-маше делали топливные баки и другие части самолетов, Метод полученияизделий из папье-маше вплоть до примерно 1945 года ничем не отличался отдревнеегипетского, разве что вместо папируса использовалась бумага.
Поскольку подобные сведения могут оказаться полезными, стоит короткорассказать, как делается папье-маше. Прежде всего из глины, пластилинаили алебастра должна быть сделана необходимая модель. Модель покрываетсятальком, льняным маслом или силиконовым лаком, чтобы папье-маше к ней неприлипло. Можно использовать почти любую бумагу, но лучше всего мягкую.Самый хороший клей для наших целей - водянистая смесь мездрового клея итак называемой канцелярской пасты (крахмальной). По густоте эта смесь должнанапоминать гороховый суп. Когда все готово, нарвите кусочков бумаги размеромпримерно в ладонь и замочите их в клее, пока они не станут совсем мягкими.Затем облепите этими листочками модель, продолжая занятие до тех пор, покане получите нужную толщину. Когда все это полностью высохнет, вид у вашегоизделия может оказаться не очень презентабельным, но не огорчайтесь - египтяне,наверное, испытывали то же чувство. Дело можно поправить, если зачиститьвсе шкуркой и покрасить. Не поскупитесь на несколько слоев масляной краски,так как именно от этого зависит защита материала от непогоды. Влагостойкостьтакого изделия, конечно, неважная, но она не так плоха, как можно былобыпредположить, а механическая прочность на удивление высока. Не пытайтесьиспользовать синтетический клей, иначе ваше изделие будет хрупким, возможноиз-за хорошей адгезии.
Если бы у папье-маше сопротивление воде и грибкам не было бы хуже, чемдаже у натуральной древесины, этот материал применялся бы гораздо шире,так как легкие и прочные оболочечные конструкции со сложными кривыми поверхностямивсегда необходимы для изготовления автобусов, лодок, панцирей, ванн, мебели,тары, топливных баков и т.д. Однако столетиями использование папье-машебыло ограничено отсутствием водостойких клеев, и человек вынужден был делатьтяжелые легко уязвимые и трудоемкие оболочки из металла.
Пресс-порошки
В 1906 году доктор Бейкеленд обнаружил, что между фенолом и формальдегидомможет протекать химическая реакция с образованием смолы. Вначале жидкаяили немного тягучая, смола может стать после нагрева твердой, довольнотугоплавкой и нерастворимой. Бейкеленд был человеком весьма предприимчивым,к тому времени он успел уже сколотить некоторое состояние на изобретениии внедрении фотобумаги типа “Велокс”, но, по-видимому, даже он не очень-торассчитывал на более или менее широкое применение своей смолы. Вначалеона появилась в продаже в качестве заменителя натуральных смол в лакахи глазурях. Мне говорили, что огромная компания “Бакелит” начинала своюжизнь под вывеской “Лаковая компания Даммард”, выпустив на рынок три сортаглазурей: “Даммард”, “Даммардер”, “Даммардест”.
Сама по себе затвердевшая бакелитовая смола - твердое хрупкое веществос небольшой прочностью, очень напоминающее натуральную смолу. Ее использоваликак добавку к лакам, особенно в электротехнике для изоляции. Потом обнаружилось,что она превосходно клеит древесину в фанерном производстве. Но в чистомвиде для конструкционных целей она не находила применения. Поворотным пунктомпослужили наблюдения Бейкеленда - он обнаружил, что если к смоле до еезатвердевания добавить волокон, то это резко меняет ее прочность.
С этого и началось использование так называемых формовочных порошков.Они представляют собой смеси частично затвердевшей смолы и коротких целлюлозныхволокон применяемых обычно в виде древесной муки. Такой сухой порошок насыпаютв нагретую стальную пресс-форму. Здесь порошок размягчается, и под давлениемполучившаяся масса затекает во все уголки формы, после чего происходитнеобратимое твердение. Первой серийной деталью, сделанной по этой технологии,считается ручка рычага переключения скоростей автомобиля “роллс-ройс” (1916 год).
Этот материал, получивший название бакелита, быстро приобрел популярность,так как был легким и дешевым и делал нетрудоемким изготовление деталейдаже очень сложных форм. Бакелит стал настолько популярным, что одно времясерьезно обсуждался проект наводнения похоронного рынка бакелитовыми гробами.Применение бакелита сдерживалось тем, что обычный технический бакелит былслабым и хрупким, поскольку в нем использовались очень короткие волокна,лишь незначительно упрочнявшие смолу. Он был хорош лишь тем, что смесьлегко формовалась, и поэтому стоимость производства была небольшой.
Пресс-порошки сразу же привели к сокращению производства бирмингемовскойбронзы. Следующим результатом была волна возмущений (пожалуй, бесплодных)со стороны потребителей, которым не нравились внешний вид и хрупкость новогоматериала. Частенько, отведя в сторону, мне шептали: “Говорят, сюда засунулиопилки, чтобы сделать дешевле?” Нужно было объяснять, что без опилок былобы хуже и что в любом случае чего еще ждать при такой низкой цене. Ведьнебольшие бакелитовые изделия вроде корпуса выключателя стоили три шиллингасотня! Нужно сказать, что вскоре подобные изделия стали значительно лучше.Одной из причин этого явилась конкуренция со стороны намного более вязкихтермопластов, таких, как полиэтилен и нейлон.
Процесс получения изделий из пресс-порошков очень прост. Достаточнозасыпать в горячую пресс-форму заранее взвешенную порцию порошка и нажатькнопку пресса. Какой бы сложной ни была форма, порошок заполнит ее, растекаясьподобно жидкости. Это очень удобный и эффективный процесс, особенно дляпроизводства небольших изделий электротехнического назначения. Например,при прессовании корпуса настенного выключателя пластичная масса должнарастекаться вокруг многочисленных латунных деталей. Но, как вы уже знаете,для этого нужно использовать довольно короткие волокна, которые дают сравнительнонепрочный и хрупкий материал. Ведь в смоле трещина, встретив на своем путикороткое волокно, может легко обойти его и продолжить свой путь дальше.
Слоистые материалы с целлюлозными волокнами
Если от материала требуется максимальная прочность, для армированияследует использовать длинные аккуратно уложенные волокна. Далеко не всегда,однако, можно заставить такой материал заполнить форму. Поэтому в слоистыхпластиках, разработанных в 20-е годы, бумага или ткань пропитывались растворомфенольной смолы (обычно спиртовым). После сушки пропитанные слои укладывалимежду тщательно выверенными параллельными нагретыми плитами гидравлическогопресса, где смола затвердевала под давлением около 150 кГ/см2.
Такой материал был довольно дорогим, но хорошим по качеству, а некоторыеего сорта обладали довольно высокой прочностью и вязкостью. Фенольные смолыимеют черный или грязно-коричневый. цвет, поэтому листы слоистых пластиковне использовали для декоративных целей. Вначале большая часть пластиков,наполненных бумагой (гетинаксы), использовалась в качестве электроизоляционныхматериалов; пластики на основе ткани (текстолиты), будучи очень вязкими,шли на изготовление шестеренок, подшипников, кулачков. В послевоенные годыпоявились меламиновые бесцветные смолы, а с ними и возможность делать поверхностьлистов цветной или узорчатой. Материал в толще листа оставался при этомпрежним, на основе коричневой пропитанной фенольной смолой бумаги, чтои прочнее, и дешевле. Такой комбинированный материал оказался очень подходящимдля покрытий столов и панелей и сыграл большую роль в “кухонной революции”.
Декоративные листы пластика, которых сейчас много в продаже, сравнительнонепрочны и хрупки, но, поскольку они почти всегда приклеиваются к достаточножестким основаниям (например, к деревянной табуретке), это не имеет особогозначения. В наши дни трудно себе представить что до появления этих материаловпросто не существовало действительно удовлетворительных покрытий для столов.Невероятное число женских человеко-часов тратилось на то, чтобы скрестидеревянную поверхность, ведь по своей пористой природе она неотразимо притягиваетк себе грязь.
Хотя целлюлоза в таких пластиках и сохраняет в основном свое пристрастиек воде, наивреднейший остаток воды в ней может быть уменьшен путем сушкиволокон с последующей формовкой и отверждением материала в возможно болеесухом состоянии. Если это сделано, каждое волокно зажато и ограничено вперемещениях матрицей и другими волокнами. Поэтому разбухание резко уменьшается,хотя через смолу и проникают пары воды. Поскольку бумага (или ткань) должнабыть покрыта смолой на одной из первых стадий технологического процесса,а сушка производится непосредственно перед прессованием, то вместе с целлюлозойсохнет и смола. А ведь легкость, с которой фенольная смола заполняет горячуюформу перед затвердеванием, очень сильно зависит от количества имеющейсяводы; поэтому сухая смола требует более высоких давлений для равномерногораспределения ее в объеме материала и получения нужных внутренних связей.Это приводит к тому, что получать такие материалы с приличной водостойкостью,используя небольшие давления (заметно меньше 150 кГ/см2),обычно невозможно. Общая нагрузка, которую нужно приложить к стандартнойпанели размером 240X120 см, будет, следовательно, около 5000 т; поэтомуизготовление текстолита и гетинакса требует дорогого оборудования.
На влагостойкость текстолита и гетинакса влияют также некоторые химическиеособенности процесса пропитки. Можно значительно снизить захват влаги засчет правильного выбора смолы. Так часто и делают в производстве электротехническихматериалов. К сожалению, хорошая влагостойкость означает блокирование гидроксиловв целлюлозе, а это делает ее хрупкой и потому малопригодной для конструкционныхцелей. Сразу после войны я видел самолет, построенный немцами из материалатипа гетинакса. Чтобы обеспечить вязкость, они, насколько осмелились, снизилисопротивление материала влаге. Оказалось, что они перестарались: к томувремени, когда я его видел, он простоял под открытым небом три месяца иразваливался на куски.
Во время войны в Англии много работали над листовыми пластиками, армированнымицеллюлозными волокнами, для замены ими алюминия в обшивке самолета. Намудалось, сохраняя достаточную вязкость, снизить вызванное колебаниями влажностиполное изменение размеров в плоскости листа до 0,8%. Затем в порядке экспериментамы обшили часть поверхности двенадцати находившихся в строю самолетов.Никаких аварий не последовало, но и положительных результатов мы не получили.Дело в том, что листы были, конечно, приклепаны к алюминиевому каркасу,который не мог ни разбухать, ни усыхать вместе с ними. И в результате насамолетах, летавших в пустыне, пластики так натягивались, что линия заклепочногошва оказывалась усеянной трещинами; в то же время во влажном климате, особеннопосле таяния снега, листы угрожающе выпучивались и коробились. В концеконцов пришлось от этой затеи отказаться. Практически колебания размеровармированных целлюлозой материалов всегда будут составлять около 1%. Этоне согласуется ни с металлом, ни с древесиной, ни с фанерой - и потомуделает невозможным применение таких материалов в широких масштабах.
Использование прочных слоистых пластиков сегодня практически ограничиваетсяплоскими листами, которые можно прессовать между тщательно вывереннымиплитами. Для изготовления фигурных изделий необходимо иметь профилированнуюстальную пресс-форму, состоящую из двух половинок. В любом случае это довольнодорогое практически неизменяемое приспособление, но даже не оно делаетпрофильное прессование на редкость трудным. Трудность здесь связана с тем,что такой материал почти не течет в процессе прессования. Поэтому долженочень точно выдерживаться зазор между двумя половинками пресс-формы. Еслиэтого не обеспечить, то вся нагрузка придется на те участки, где зазорменьше нормы а остальной материал не будет прессоваться совсем.
Трудности и дороговизна этой операции вполне достаточны, чтобы отпугнутьинженеров, особенно сейчас, когда в их распоряжении есть другие, болеепростые пути получения прессованных изделий. Однако в конце 30-x - начале40-х годов других путей не было, поэтому, несмотря на тяжелую и дорогуюоснастку, несколько серьезных больших деталей пошло в производство по описаннойтехнологии. Помнится, так было сделано стандартное кресло пилота для самолета-истребителя,которое использовалось в “Спитфайере” и некоторых других машинах. Эта довольнобольшая и сложная конструкция собиралась на болтах из нескольких профильныхдеталей, полученных прессованием. В работе она выдерживала нагрузки порядкатонны и никогда не доставляла беспокойства. С другой стороны, экономиявеса и стоимости по сравнению с клепаным металлическим креслом не былаочень уж велика.
Стеклопластики
Современные армированные пластмассы ведут свое начало от материаловна основе неорганических волокон, нашедших применение в конце войны. Впервыеподобные материалы использовали для изготовления антенных обтекателей,которые представляют собой куполообразную конструкцию, где размещаетсяантенна локатора. Обтекатель должен быть прозрачным для радиоволн, поэтомуматериал для него требуется неэлектропроводный. В качестве основы такогорода материала наибольшим успехом и по сегодняшний день пользуется стекловолокно.
Состав его немного изменился, но в остальном волокна похожи на те, которыевытягивал Гриффитс почти полвека назад. Процесс их вытягивания механизирован,сейчас стекло плавится в нагреваемом электротоком платиновом контейнере,в дне которого имеется обычно 200 или 400 маленьких отверстий. Через каждоеиз этих отверстий тянется волокно, которое охлаждается и затвердевает попути к расположенному под контейнером вращающемуся барабану, на которыйоно наматывается. Обычный диаметр волокон - от 5 до 10 мкм. Их прочностьна разрыв сразу после вытягивания составляет, по-видимому, 300-350 кГ/мм^2,но при последующих операциях она снижается. Поскольку свежие волокна имеюттенденцию склеиваться между собой, а за этим следует взаимное разупрочнение,волокна на пути от контейнера к барабану подвергаются специальной обработке,в результате которой на них появляется защитная пленка. Эта пленка предохраняетот повреждений при последующих операциях, например ткани. Перед операциейпропитки смолой эта пленка удаляется - ее растворяют или сжигают.
После того как волокна вытянуты и намотаны на барабан, дальнейший ходсобытий зависит от назначения будущего изделия. Мы уже говорили, что вформу нужно уложить как можно больше волокон просто потому, что они разво сто (по крайней мере) прочнее смолы. Поэтому при прочих равных условияхпрочность полученного материала будет пропорциональна содержанию волокон.В стекломате, содержащем отдельные волокна, их концентрация очень и оченьмала, поэтому стекловолокно в таком виде используется редко, только в специальныхслучаях. Лучшая упаковка волокон получается в параллельных пучках, напримерв нитях или пряже. Нити обычно содержат несколько сотен отдельных волокон.
Поскольку волокна непрерывные, нет нужды использовать большую круткунити, чтобы держать их вместе. Иногда после пропитки смолой такая пряжаиспользуется для изготовления путем намотки - разного рода резервуаров,труб, сосудов давления. Для многих высококачественных изделий из стеклонитиделают специальную ткань, которая выглядит как дорогой белый сатин.
Стеклопластики из ткани хороши своей прочностью, но изделия из них довольнодороги. И дело здесь не столько в высокой стоимости самого материала, скольков том, что стеклоткань не очень удобна для автоматизации процесса полученияпрофильных изделий. Поэтому наибольшая часть производимого стекловолокнаприменяется в виде мата из рубленой стеклопряжи. Пряжа рубится на кускидлиною 5 - 8 см и идет главным образом на получение плоских матов путемнанесения этой волокнистой массы на проволочную сетку, покрытую слабымбыстросохнущим клеем. Прижимается мат к сетке с помощью воздушной струи.Когда клей высыхает, мат снимается с сетки, и с ним можно обращаться, какс листом бумаги. Для изготовления фигурных изделий мат разрезается на подходящиекуски, которыми обклеивают соответствующую модель, пока не получается детальнужных размеров и конфигурации.
При изготовлении больших партий профильных изделий используют ту жетехнику обдувания воздушными струями, поскольку этот процесс можно автоматизировать.Он применяется при изготовлении таких изделии, как шлемы корпуса пишущихмашинок и т.д. Вместо металлической сетки здесь используется сетчатаямодель, на которую тем же способом наносится стекломат. Полученный стекломатавтоматически перемещается в нагретую стальную пресс-форму, здесь к немудобавляется основная связующая смола, которая твердеет под давлением.
Помимо высокой прочности, стекловолокно имеет еще одно достоинство -оно не разбухает в воде, поэтому операцию формовки нет нужды проводитьпод большим давлением. Значит, можно использовать недорогие, легко изменяемыепресс-формы и отказаться от мощных гидравлических прессов.
При формовке стеклопластиков в качестве связующего можно использоватьфенольные смолы, но обычно лучше применять смолы (например, полиэфирные),разработанные специально для этой цели. Многие из производимых смол твердеютне только при очень малых давлениях, но и при комнатной температуре - последобавления катализатора.
Это привело к технологии, которую можно было бы назвать “методом ведраи щетки”. Очень популярный среди любителей и небольших фирм, такой способпочти ничем не отличается от египетского способа получения папье-маше.Слои холоднотвердеющей смолы и стекломата (или стеклоткани) попеременнонакладывают на простую гипсовую модель и оставляют в таком виде на время,необходимое для отверждения. Если вся процедура проделана добросовестнои аккуратно, получится вполне нормальная конструкция. Правда, затраты трудабудут великоваты, если потребуется сделать десятки таких изделий. Но дляизготовления очень больших конструкций, например лодок, - это практическиединственный путь.
Одна из трудностей этой технологии заключается в том, что она не позволяетполучить двух совершенно одинаковых изделий, так как надлежащий контрольпрактически невозможен. Ну а поскольку прочность такой переменчивой конструкциипредсказать довольно трудно, этот метод не совсем годен для изготовлениясамолетных конструкций.
Чтобы получить изделие хорошего качества, смола должна твердеть в сухой,теплой, контролируемой атмосфере, а это не всегда возможно в условиях полукустарныхмастерских. Именно отсюда возникают жалобы на лодки из стеклопластиков- их зачастую делают в холодных сырых сараях. На хороших заводах эту операциюпроделывают в обогреваемом (и дорогом поэтому) помещении, а кустари и любителис наибольшим эффектом могут приложить свои силы к доводке корпусов, изготовленныхпрофессионалами на подходящем оборудовании.
Для больших конструкций вроде судовых корпусов становится важной стоимостьмодели, так как количество производимых изделий обычно невелико. В такихслучаях лучше использовать недорогие модели, а смоле дать возможность медленнотвердеть при комнатной температуре. Кроме того, при этом допустима длительнаяручная доводка затвердевшей оболочки. Но если мы имеем дело с такими изделиями,как шлемы или чемоданы, экономическая картина меняется. В подобной ситуацииобычно применяют состоящую из двух половинок стальную нагретую пресс-форму.Стекловолокнистую заготовку опускают в пресс-форму и перед самым захлопываниемдобавляют в нее определенное количество жидкой смолы горячего твердения.Скорость затвердевания подбирается так, чтобы смола, прежде чем затвердеть,успела равномерно пропитать стекломассу. Затем остается лишь извлечь изформы готовое изделие - почти никакой ручной доводки не требуется, таккак пресс-форма тщательно отполирована. Весь процесс получения волокнистойзаготовки, установки ее в пресс-форму, пропитки смолой и твердения можетвыполняться в одной большой машине в течение нескольких секунд, в то времякак ручная укладка стекловолокна требует часов и даже дней.
В первых армированных материалах количество волокон было небольшим иволокно вводилось с целью нейтрализации грубых дефектов слабой хрупкойматрицы. О таких материалах правильно говорить как об армированных. Однакосо временем назначение матрицы изменилось - она стала служить только длясклеивания прочных волокон между собой; теперь мы стремимся использоватьматрицу лишь в количествах, необходимых для надежного связывания волокон.Такие системы правильнее было бы называть связанными волокнистыми материалами.
Серьезное изучение свойств этих систем - предмет трудный и в высшейстепени математизированный. В последнее время он получил признание и дажесделался модным в академических кругах. Не вдаваясь в детали, можно сказать,что свойства массы склеенных между собой волокон более или менее следуютпредсказаниям, полученным с помощью элементарного расчета. Обычно труднополучить материал, содержащий более50% волокон по объему. Прочность готового стекловолокна можно считатьравной примерно 200 кГ/мм2, а его модульЮнга - 7000 кГ/мм2. Пруток стеклопластика(например, спиннинговое удилище), в котором все волокна уложены параллельнооси, будет иметь прочность 100 кГ/мм2,а модуль Юнга 3500 кГ/мм2, поскольку смолапочти не вносит своей доли ни в прочность, ни в модуль, хотя, конечно,увеличивает вес. Рассчитанный по простому правилу смесей, удельный весматериала составит 1,85 Г/см3, если в немне будет пор (а так и должно быть); удельный вес стекла - около 2,5, асмолы - 1,2 Г/см3. Мы можем поэтому составитьследующую сравнительную таблицу.
Материал / Удельный вес, г/куб.см. / Предел прочности, кГ/кв.мм. / Удельная прочность / Модуль Юнга, кГ/кв.мм. / Удельный модуль Юнга
Стеклопластик (параллельные волокна) / 1.85 / 100 / 54 / 3500 / 2000
Стеклопластик (стеклоткань) / 1.85 / 50 / 27 / 1750 / 1000
Мягкая сталь / 7.8 / 40 / 5 / 21000 / 2700
Высокопрочная сталь / 7.8 / 200 / 26 / 21000 / 2700
Из таблицы ясно, что сравнивать сталь и стеклопластик не оченьпросто. Грубо говоря, стеклопластики прочнее стали, особенно по отношениюк удельному весу. Но по жесткости они хуже сталей, даже если принять вовнимание намного меньшую плотность. В этом отношении они уступают и дереву.
Как и в случае с древесиной, сравнение в известной степени зависит оттого, в скольких направлениях должен быть прочным материал. Конечно, наивысшиецифры дает материал, в котором все волокна и, следовательно, прочность,направлены вдоль одной оси; но технические приложения материалов такоготипа сильно ограничены. Когда одинаковое число волокон пересекается подпрямым углом, мы имеем материал, напоминающий фанеру: половина прочностиоднонаправленного материала под углами 0° и 90° и несколько меньшая прочностьпод углом 45°. Такой материал может быть получен при армировании стеклотканью.
Из теории следует, что если мы хотим иметь действительно одинаковыесвойства во всех направлениях волокнистого листового материала, то этогоможно достичь несколькими способами укладки волокон. Все эти способы армированиядают треть прочности и жесткости однонаправленных систем. Эксперимент оченьхорошо подтверждает теорию. Однако на практике обычно используется стеклопластикс матами из рубленой пряжи. Таким армированием очень редко удается достичьсодержания волокон 50% (волокна укладываются некомпактно), поэтому мы должны,пожалуй, рассчитывать на прочность, меньшую чем треть прочности однонаправленногоматериала. Такого рода стеклопластики обычно используются для сравнительнонедорогих поделок, где большей прочности, возможно, и не требуется. Нодаже и они, как правило, превосходят мягкую сталь по удельной (отнесеннойк весу) прочности. Вот по жесткости армированные пластики - и в частности,стеклопластики - не могут конкурировать ни с металлами, ни с древесиной.В этом одна из главных трудностей применения стеклопластиков в большихконструкциях - судах, корпусах автомашин и т.д. По той же причине их вычеркиваютв настоящее время из списка материалов, пригодных для силовых конструкцийсамолета. Правда, можно было бы повысить жесткость автомобильного кузова,подкрепив его изнутри стальными трубами, но стоит ли тогда связыватьсяс пластиками?
Металлы - почти, изотропны, то есть их свойства примерно одинаковы вовсех направлениях. Эта особенность очень важна для таких деталей, как коленчатыйвал, где металлы поэтому незаменимы. Но там, где это свойство не стольсущественно (оболочки, панели), лучше применять волокнистые пластики. Получитьизотропные свойства в волокнистом материале практически невозможно, потомучто очень трудно плотно уложить волокна в трех направлениях сразу. Дажестог сена - слоистая конструкция. Теория показывает, что прочность трехмернойбеспорядочной упаковки волокон была бы равна 1/6 от прочности материалас однонаправленными волокнами - вряд ли стоит стремиться получить такойматериал.
Несмотря на все свои недостатки, материалы, подобные стеклопластику,постепенно завоевывают все новые и новые позиции. С течением времени помере того, как мы лучше их узнаем, мы и используем их все шире. Стоимостьсырья для пластмасс мало отличается от стоимости стали и алюминия. Однакоесли вы сравните стоимость обработки этих материалов, то увидите, что затратына производство сложных изделий из пластмасс настолько меньше соответствующихзатрат при использовании металла, что готовое изделие из пластмассы можетбыть намного дешевле. Но чтобы реализовать эту возможность, обычно нужнозаново спроектировать все изделие, а подобные мероприятия часто натыкаютсяна сопротивление.
Строить из стали корпус большого судна - вполне резонно, по крайнеймере если нет спешки и не нужно слишком заботиться о весе. Но сталь становитсябезнадежно неэффективной для судовых корпусов меньших размеров: толщиналиста получается столь малой, что, если даже удастся решить проблемы выпучивания,вмятин и т.д., за несколько месяцев он насквозь проржавеет. В этой областистеклопластики, кажется, утвердились очень прочно, здесь они вполне могутконкурировать по стоимости с металлами.
За последние десятилетия было сделано много усовершенствований в автомобиле.Лично я не отношу к их числу штампованный стальной кузов. Очень уж он тяжел,а ведь вес увеличивает расход бензина и ухудшает характеристики машины.Такой корпус требует также тщательной звуковой защиты. Но, что хуже всего,он начинает ржаветь сразу же, как только вы начинаете ездить на машине,и, по-видимому, коррозия корпуса, а не механический износ приводит раноили поздно большинство автомобилей на склады металлолома.
Вероятно, две причины тормозят применение стеклопластиков для кузововавтомашин. Во-первых, их массовое производство все еще обходится дорого,а, во-вторых, по мнению тех, кто торгует автомобилями, потребителю нравитсялоск полированной поверхности, трудно достижимый при использовании стеклопластиков.В то же время в мелкосерийном производстве почти все автомобили имеют стеклопластиковыйкузов. В самом деле, - только такое решение позволяет в подобных случаяхвести дело экономично, отказавшись как от дорогостоящих штампов, так иот старомодного кузова. Кузов из стеклопластика позволяет примерно вдвоеуменьшить вес автомобилей, а это значит, что приемистость машины резковозрастает.
Несмотря на недостатки стеклопластика, мировое производство изделийиз него достигло почти миллиона тонн в год и продолжает быстро расти (алюминияи его сплавов производится примерно 4,5 млн. тонн). Но в конце концов оно,наверно, затормозится из-за относительно малой жесткости материала.
Армированный бетон
Хотя между людьми, работающими с железобетоном, и специалистами по стеклопластикамникогда, по-видимому, не было сколь-нибудь серьезных связей, в этих двухобластях много общего, и поэтому уместно закончить настоящую главу небольшимразделом, посвященным армированному бетону. Подобные материалы ведут своеначало с глубокой древности, а различия между ними заключаются главнымобразом в масштабах: в бетоне, например, арматура намного грубее, чем впластиках. Еще в Древнем Вавилоне использовали тростник для армированияпостроек из высушенной грязи; а различные вариации “плетенки и глины” издавнаприменялись во всем мире. Деревенька в Эссексе, где я пишу эту главу, построенаглавным образом из грязи и штукатурки поверх сплетенных прутьев.
Вероятно, первыми стали применять железо в качестве арматуры греки.Мы уже говорили в главе 1, что в нормальнойкладке все должно быть в состоянии сжатия, поскольку кладка не может противостоятьсколько-нибудь значительным растягивающим напряжениям. Это условие привелок использованию арок и куполов, позволяющих создавать большие перекрытия,в которых не возникают напряжения растяжения. Греки об этом отлично знали,но они, кажется, не признавали арок - по крайней мере в формальной архитектуре.Очень возможно что они исходили при этом из эстетических соображений. Грекидалеко не всегда подчиняли свои поступки строго рассчитанной необходимости,особенно в архитектуре идущей от деревянных конструкций. Парфенон и вседругие дорические храмы - точные мраморные копии деревянных строений вплотьдо имитации в мраморе штифтов, скрепляющих между собой деревянные балки.Но так как творения греков блестящи, а наши собственные здания зачастуюужасны, не нам посмеиваться над античными архитекторами по этому поводу.
Деревянная архитектура, по существу, основана на балочных конструкциях,потому что ее строительный материал - разного рода длинные брусья. К томуже древесина обладает хорошей прочностью на разрыв. Греческая архитектурабыла, таким образом, архитектурой балок и колонн. То же самое прекрасноиллюстрирует американская “колониальная” архитектура. Строители здесь визбытке имели дерево, и потому они охотно и успешно обратились к классическомустилю. Готика и древесина несовместимы, поскольку готический стиль основанна напряжениях сжатия, которые под силу лишь каменным аркам.
Хотя мрамор, пожалуй, лучше других камней с точки зрения прочности на разрыв,его прочность все-таки слишком мала и непостоянна, поэтому делать из него балкикакой бы то ни было длины невозможно. В ранних дорических каменных храмах этокомпенсировалось тем, что пролеты балок были короткими, а капители сверхуколонн - широкими. Даже в Парфеноне (строительство началось в 447 году до н.э.)свободный пролет большинства балок не превышает 2,5 м, хотя и выглядят онидлиннее. Однако, когда в 437 году до н.э. Мнесикл приступил к строительствувхода в Акрополь (Пропилеи), ему потребовалось перекрывать намного большиепролеты. Их длина от 4 до 6 м определялась как архитектурными пропорциями, таки необходимостью церемониала. Чтобы справиться с растягивающими напряжениями,Мнесикл решил замуровать в мраморе в специальных канавках железные стержнидлиной около 2 м. Так появился армированный мрамор, который должен был позамыслу создателей вести себя подобно древесине.
Однако Мнесикл не сделал существенного шага вперед: греческие колонисты вАкрагасе (Сицилия) еще в 470 году до н.э. использовали железные армирующиебрусья длиною 4,5 м и сечением 12Х30 см. Правда, остается тайной, как былиполучены такие поковки. Но это заставляет предположить, что греки не испыталибы технологических трудностей в изготовлении паровой машины и другого тяжелогооборудования, если бы до них додумались[44].
Как мы уже говорили, готические церкви рушатся, если в них появляются растягивающиенапряжения, а появляются они довольно часто. Выход - быть может, частичный- был найден в контрфорсах. Примерно тот же способ применялся и в позднейклассической и романской архитектуре. Так, давление, действующее со стороныкупола св. Софии в Константинополе (532 год), уравновешивается силами,созданными двумя полукуполами, на которых он покоится; правда, арки у егооснования связаны железными стержнями.
Купола соборов св. Петра и св. Павла[45] покоятся нацилиндрических барабанах. Здесь не было возможности уравновесить силы,направленные наружу, вспомогательными куполами или контрфорсами: это совершеннонарушило бы замысел проекта с изолированными куполами. В обоих случаях проблемабыла решена, как известно, передачей нагрузки на замкнутую растянутую цепь,заделанную в кладку вокруг основания куполов.
Более общий подход предложил француз Суффло (1713 - 1781), пытавшийсяувеличить прочность кладки на растяжение путем замуровывания в нее железныхстержней. Однако вдоль швов проникала влага, железо окислялось и расширениепродуктов коррозии крошило кладку. Позже Брюнель пытался делать примерното же самое, вставляя обручное железо (тонкие полоски железа, идущие наобручи для бочек) в соединения кирпичной кладки. Результат был в точностипохож на предыдущий.
Затем, вероятно, сразу трое почти одновременно обнаружили, что коррозияжелезной арматуры в портландцементе не столь значительна, чтобы вызватьповреждения. Французский садовник Жозеф Монье (1823 - 1906) в 1849 годусделал цветочные горшки, а точнее - большие кадки для апельсиновых деревьев,заложив сетку из тонких железных стержней в цемент. Эти кадки оказалисьудачными и привлекли к себе внимание. Англичанин В. Вилкинсон в поискахприменения старым шахтным канатам сделал армированные строительные балки(подобно грекам), расположив канаты на их растянутой стороне. Наконец,французский инженер Ж. Лямбо показал в 1855 году гребное судно, сделанноеиз бетона, армированного железными стержнями, - по-видимому, оно было первымв длинной веренице не очень удачных бетонных судов. Лямбо запатентовал(казалось бы, поздновато) использование комбинированного железобетонногоматериала в строительстве.
Железная арматура позволяет бетону довольно успешно нести растягивающиенагрузки. Но деформация растяжения, при которой бетон разрушается, оченьмала; поэтому бетон растрескивается задолго до того, как арматура значительнодеформируется. Если к такой комбинированной системе приложить сколь-нибудьсерьезную растягивающую нагрузку, бетон будет пронизан сеткой трещин. Еслиэти трещины малы - через них проникнет внутрь вода, если они велики - бетонраскрошится. Лучший способ избежать как одного, так и другого - поставитьбетон навсегда в условия сжатия, а арматуру раз и навсегда растянуть. Различныевиды такого материала, известного как предварительно напряженный железобетон,начали появляться примерно с 1890 года; но, хотя его применение было вполнеуспешным, распространение он получил не сразу.
Серьезно и в широких масштабах предварительно напряженный железобетонстал применяться сравнительно недавно. Его использование дает возможностьстроить намного более эффективные и нагруженные конструкции, чем из обычногожелезобетона. Естественно, возникает вопрос, не лучше ли делать всю конструкциюиз стали? Оказывается, нет. И не только из-за существенной экономии стали.Бетонная матрица предохраняет стальные стержни от потери устойчивости икоррозии. Благодаря последнему конструкция почти не требует ухода.