Почему мы существуем? Величайшая из когда-либо рассказанных историй — страница 7 из 60

Открытия Фарадея позволили сформировать и обеспечить энергией нашу цивилизацию, осветить наши города и улицы, запитать наши электрические устройства. Трудно представить себе другое открытие, глубже укорененное в структуру современного общества. Но еще важнее и глубже – и, кстати говоря, именно это делает вклад Фарадея в нашу историю таким значительным – то, что он обнаружил недостающую деталь головоломки, изменившую наши представления буквально обо всем в физическом мире, начиная с самого света. Если Ньютон был последним магом, то Фарадей – это последний из современных ученых, живший во тьме, если говорить о природе света. После его работ ключ к пониманию истинной природы нашего главного окна в окружающий мир лежал у всех на виду и ждал только подходящего человека, который бы его поднял.

* * *

Не прошло и десяти лет, как молодой шотландский физик-теоретик, которому долго не везло, сделал следующий шаг.

Глава 3Свет сквозь стекло ясное

Не бывает ничего слишком чудесного, чтобы не быть правдой, если только это согласуется с законами природы; а в делах, подобных этим, эксперимент – лучшая проверка такого согласия.

Фарадей, запись № 10 040 в лабораторном журнале (18 марта 1849 г.)

Величайший физик-теоретик XIX столетия Джеймс Кларк Максвелл, которого Эйнштейн позже сравнит с Ньютоном по степени влияния на физику, по случайному совпадению родился в тот самый год, когда Майкл Фарадей совершил великое экспериментальное открытие – обнаружил магнитную индукцию.

Подобно Ньютону, Максвелл тоже начал свою научную карьеру с острого интереса к цвету и свету. Ньютон исследовал спектр видимых цветов, на которые расщепляется белый свет, проходя сквозь призму, но Максвелл, будучи еще студентом, исследовал обратный вопрос: каков минимальный набор первичных цветов, способный воспроизвести для человеческого глаза все видимые цвета, содержащиеся в белом свете? При помощи набора цветных волчков он показал, что, по существу, все воспринимаемые нами цвета можно получить из смеси красного, зеленого и синего – факт, известный всякому, кто хоть раз втыкал RGB-кабель в разъем цветного телевизора. Максвелл воспользовался этим, чтобы изготовить первую в мире, еще очень несовершенную, цветную фотографию. Позже он заинтересовался поляризованным светом, который получается из световых волн, электрическое и магнитное поля которых колеблются только в определенных направлениях. Он зажимал бруски желатина между поляризующими призмами и пропускал через них свет. Если две призмы были ориентированы таким образом, чтобы пропускать только свет, поляризованный в разных, взаимно перпендикулярных направлениях, то при размещении их друг за другом никакой свет через них не проходил. Однако если в желатине между призмами имелись напряжения, то плоскость поляризации света немного поворачивалась при прохождении через вещество, так что некоторое количество света проходило и сквозь вторую призму. Наблюдая эти остатки света, проходящие через вторую призму, Максвелл получил возможность исследовать напряжения в веществе. Сегодня этот метод стал полезным инструментом поиска возможных механических напряжений в сложных структурах.

Даже эти хитроумные эксперименты не вполне отражают ненасытный интеллект Максвелла или его математические способности, проявившиеся удивительно рано. Печально, что Максвелл умер в возрасте всего сорока восьми лет, но и за такой короткий срок он успел сделать необычайно много. Его любознательная натура наглядно отражена в нескольких фразах, которые его мать добавила к письму его отца к свояченице, написанном, когда Максвеллу было всего три года:

Это очень счастливый человечек, он многому научился с тех пор, как погода успокоилась; он обожает возиться с дверями, замками, ключами и тому подобное, то и дело от него слышится: «Покажи мне, как это делают». Кроме того, он исследует скрытые пути ручьев и проволоки от звонков и способ, каким вода попадает из пруда к нам через стенку.

После безвременной смерти матери (от рака желудка, жертвой которого станет позже и он сам, в том же возрасте) его обучение прервалось, но к тринадцати годам он нашел свой путь и учился в престижной Эдинбургской академии, где завоевал награду по математике, а также по английскому языку и поэзии. Именно тогда Максвелл опубликовал свою первую научную работу о свойствах математических кривых; она была представлена в Королевском обществе Эдинбурга, когда автору было всего четырнадцать лет.

В университете после этого раннего старта Максвелл буквально расцвел. Он получил диплом Кембриджа и менее чем через год – намного раньше, чем это происходит обычно, – стал членом совета своего колледжа. Вскоре после этого он ушел из университета[4] и вернулся в родную Шотландию, чтобы принять кафедру натуральной философии в Абердине.

Он возглавил ее в двадцать пять лет и преподавал по пятнадцать часов в неделю, а сверх того читал дополнительную бесплатную лекцию в соседнем колледже для работающих студентов (сегодня это было бы неслыханно для профессора, возглавляющего кафедру; мне вообще трудно представить, что при такой нагрузке у меня, к примеру, оставалась бы еще энергия на исследования). Тем не менее Максвелл нашел время, чтобы решить задачу, над которой ученые бились больше двух столетий: как сохраняют устойчивость кольца Сатурна? Он пришел к выводу, что кольца должны состоять из мелких частиц, что принесло ему крупный приз, объявленный с целью стимулирования исследований по этому вопросу. Через сто с лишним лет, когда «Вояджер» прислал на Землю первые снимки этой планеты с близкого расстояния, теория Максвелла полностью подтвердилась.

Можно было бы подумать, что столь замечательные результаты позволяли Максвеллу чувствовать свою профессорскую позицию неуязвимой. Однако в 1860 г. – в том же году, когда Королевское общество удостоило его престижной медали Румфорда за работы по цвету, – колледж, где он читал лекции, объединился с другим колледжем, и нужда в двух профессорах натуральной философии отпала. Максвелла бесцеремонно отправили в отставку, и это научно-административное решение может считаться одним из самых тупых в истории (а там, поверьте, есть из чего выбирать). Он попытался получить кафедру в Эдинбурге, но и это место досталось другому кандидату. В конце концов ему удалось найти место на юге страны, в лондонском Королевском колледже.

Можно было бы ожидать от Максвелла разочарования или подавленности таким ходом событий, но, если что-то такое и было, на его работе это никак не отражалось. Следующие пять лет в Королевском колледже стали самым продуктивным периодом его жизни. За это время он успел изменить мир, причем четырежды.

Первыми тремя достижениями были: создание цветной фотографии; разработка теории поведения частиц газа (что заложило фундамент такой научной области, как статистическая физика, которая необходима для понимания свойств вещества и излучения); наконец, разработка «метода размерностей» – инструмента, которым, наверное, чаще всего пользуются современные физики для установления глубоких связей между физическими величинами. Я сам использовал его в прошлом году вместе с коллегой Фрэнком Вильчеком, чтобы продемонстрировать одно фундаментальное свойство гравитации, важное для понимания происхождения Вселенной.

Каждого из этих достижений в отдельности было бы достаточно, чтобы надежно обеспечить Максвеллу место среди величайших физиков своего времени. Однако его четвертое достижение полностью изменило все, включая наши представления о пространстве и времени.

В период пребывания в Королевском колледже Максвелл часто бывал в Королевском институте. Там он познакомился с Майклом Фарадеем, который был на сорок лет старше, но по-прежнему полон идей. Возможно, эти встречи побудили Максвелла вновь перенести фокус своего внимания на интереснейшие новые открытия в области электричества и магнетизма, где он пятью годами ранее начинал исследования. Максвелл воспользовался своим немалым математическим талантом, чтобы описать открытые Фарадеем явления и разобраться в них. Он начал с того, что подвел под гипотетические силовые линии Фарадея более прочную математическую основу, что позволило ему глубже исследовать открытую Фарадеем индукцию. За двенадцать лет, с 1861 по 1873 г., Максвелл создал свою величайшую работу – полную теорию электричества и магнетизма.

Воспользовавшись открытием Фарадея как ключом, он показал, что отношения между электричеством и магнетизмом симметричны. Из экспериментов Эрстеда и Фарадея явствовало, что поток движущихся зарядов порождает магнитное поле и что изменяющееся магнитное поле (при движении магнита или просто при включении электрического тока, что тоже проявляется как магнит) порождает электрическое поле.

Впервые Максвелл выразил эти результаты математически в 1861 г., но вскоре понял, что его уравнения неполны. Магнетизм в них выглядел иначе, чем электричество. Движущиеся заряды порождали магнитное поле, но магнитное поле могло порождать электрическое даже без движения – просто изменяясь. Вспомним, что обнаружил Фарадей: при включении и нарастании электрического тока появляется переменное магнитное поле, а оно порождает электродвижущую силу, которая вызывает ток в другом близко расположенном проводнике.

Максвелл понял, что для полноты и непротиворечивости системы уравнений, описывающих электричество и магнетизм, нужно добавить к уравнениям дополнительный член, представляющий нечто, названное им «током смещения». Он рассуждал так: движущиеся заряды, то есть ток, порождают магнитное поле, и движущиеся заряды – это способ получить переменное электрическое поле (поскольку поле от каждого заряда изменяется в пространстве при перемещении этого заряда). Быть может, переменное – то есть усиливающееся или ослабевающее – электрическое поле в области пространства, где нет никаких движущихся зарядов, тоже может породить магнитное поле.