суждениях Эдгара По, независимо развил сходные соображения для объяснения возраста Вселенной.
Какова конечная судьба сжимающейся «звездной Вселенной»? Планеты рано или поздно будут поглощены звездами, звезды сольются между собой, сольются галактики, и в итоге образуется «единый естественный шар шаров», который в свою очередь «мгновенно исчезнет», аннигилирует. Фантазия Эдгара По идет дальше и он допускает возможность циклического существования Вселенной: «Но должны ли мы здесь остановиться? Нет. Во Всемирном сцеплении и растворении могут возникнуть… некие новые и быть может совершенно отличествующие ряды условий — другое мироздание и излучение… Ведя наше воображение этим всепревозмогающим законом законов, законом периодичности… не вполне ли мы оправданы, допуская верование — скажем лучше, услаждаясь надеждой, что поступательные развития… будут возобновляться и впредь, и впредь, и впредь; что новая Вселенная возрастет в бытие и потом погрузится в ничто…».
Итак, если отвлечься от многословной метафизики «Эврики» и оставить только физические идеи, то перед нами предстает стройная картина эволюционирующей динамической Вселенной. Эдгар По соединил астрономические знания первой половины XIX века и модель эволюционирующей Вселенной. По словам Альберто Каппи, «этот революционный и экстраординарный синтез является тем, что придает „Эврике“ привкус современности». Действительно, рождение Вселенной в процессе своеобразного «Большого взрыва» из исходного сверхкомпактного состояния, ее крупномасштабная однородность, существование других вселенных, подчиняющихся неизвестным нам законам, возможная цикличность эволюции Вселенной, наличие в прошлом эпохи формирования объектов, сила отталкивания, существовавшая на определенной стадии развития Вселенной, — все это звучит в наше время необычайно знакомо! Кроме того, возвращаясь к основной теме этой книги, Эдгаром По было предложено и упомянутое ранее решение фотометрического парадокса.
Как Эдгар По смог высказать столь современно звучащие идеи? Сам По объясняет это тем, что он использовал не стандартные пути научного открытия — индукцию и дедукцию, — которые он назвал «узкими и кривыми тропинками — по одной ползти, по другой волочиться», а интуицию. В этом с ним солидарен и Эйнштейн, полагавший, что к самым общим законам природы «ведет не логический путь, а только основанная на проникновении в суть опыта интуиция». Ключевыми словами здесь является не столько «интуиция», сколько «основанная на проникновении в суть опыта» — интуиция должна на чем-то базироваться, у нее должна быть основа. Лучшей базой для интуиции является, конечно, хорошее знание предмета и его фактической, опытной основы. Все это было у Эдгара Аллана По — он был знаком с основными идеями и результатами современной ему астрономии.
Знали ли создатели современной космологии (им посвящена следующая глава) об «Эврике»? Даже если бы они и были знакомы с ее содержанием, заметного влияния на их работу она оказать не могла. «Эврика» — это не научная статья или монография (хотя список ученых, на работы которых По ссылается, впечатляет — Бессель, Гершель, Гумбольдт, Кеплер, Лагранж, Лаплас, Медлер, Ньютон, Росс, Струве и многие другие), а вольные размышления Эдгара По о строении Вселенной, в которые, наряду с известными или даже неправильными представлениями, вкраплены удивительные, но практически ни на чем не основанные догадки. Автор одной из самых известных и авторитетных биографий Эдгара По — Артур Куинн — в 1940 году обратился к Артуру Эддингтону с просьбой высказать свое мнение об «Эврике». Ознакомившись с «поэмой в прозе», Эддингтон оценил ее достаточно высоко, написав, что «Эврика» — это творение человека, пытавшегося согласовать науку своего времени с более философскими и духовными стремлениями разума. Он отметил также, что По, по-видимому, имел ум математика и что «соответствие между некоторыми его идеями и современными взглядами является интересным». Сохранилось и короткое замечание Эйнштейна, который в одном из своих писем в 1934 году упомянул, что «Эврика» — это «очень красивое достижение удивительно независимого ума».
Заканчивая рассказ об Эдгаре По, хочу привести цитату из еще одного представителя литературы, в шутливой форме решившего фотометрический парадокс. Стивен Ликок (1869–1944) — известнейший канадский писатель-юморист и по совместительству профессор, специалист в области политической экономии — в веселых «Очерках обо всем» (1926 год) написал: «Мир, или Вселенная, где мы устраиваем свои дела, состоит из бесчисленного количества — может быть, сотни биллионов, а, впрочем, может быть, и нет — сверкающих звезд, звездочек, комет, темных планет, астероидов, метеоров, метеоритов и пылевых облаков, вращающихся по огромным орбитам во всевозможных направлениях, со всевозможными скоростями… Свет, излучаемый этими звездами, преодолевает такие огромные расстояния, что в основном он до нас еще не дошел».
Эти слова дают решение парадокса, вполне созвучное мыслям Эдгара По, а также с подходом Медлера и Томсона, о которых сейчас пойдет речь.
1.7. Медлер и лорд Кельвин
О, эти бездны, влекущие нас ввысь!
Иоганн Генрих Медлер и Уильям Томсон (лорд Кельвин) были первыми профессиональными учеными, предложившими корректное решение фотометрического парадокса.
Немецкий астроном Иоганн Медлер вырос в Берлине. В 19 лет он потерял обоих родителей и был вынужден взять на себя заботу о трех младших сестрах. Медлер стал преподавать в семинарии, давать частные уроки и одновременно посещать занятия в Берлинском университете. В 1824 году он начал читать лекции по астрономии и по математике богатому банкиру Вильгельму Беру, встреча с которым изменила всю жизнь Иоганна. Медлер убедил банкира построить небольшую частную обсерваторию, на которой они с Бером, начиная с 1830 года, стали активно работать. Основным результатом совместной работы Медлера и Бера стала первая подробная карта Луны «Марра selenographica» (1834 год) и подробный текст к ней (1837 год). Эта работа сделала имя Медлера известным и с 1836 года он становится сотрудником Берлинской обсерватории. В 1840 году, после ухода Василия Струве в Пулковскую обсерваторию, освободилось место директора обсерватории в Дерпте (Тарту, Эстония). Медлер занял этот пост, а также стал профессором Дерптского университета. В 1866 году из-за болезни глаз, сделавшей невозможным проведение наблюдений, Медлер ушел в отставку и вернулся в Германию.
Основные научные результаты Иоганна Медлера связаны с исследованием и картографированием поверхностей Луны и Марса, изучением двойных звезд, собственных движений звезд. Известен предложенный Медлером проект календаря, более точного, чем григорианский (в этом календаре на каждые 128 лет приходится не 32 високосных года, а 31).
Рис. 13. Иоганн Генрих Медлер (1794–1874) и Уильям Томсон (лорд Кельвин) (1824–1907)
Иоганн Медлер был также очень известным историком и популяризатором астрономии. Его книга «Популярная астрономия», опубликованная в 1841 году и выдержавшая шесть прижизненный изданий, стала знаменитой, ее читали по всему миру. Упоминается в этой книге и фотометрический парадокс, причем разные издания отражают изменение взгляда Медлера на эту проблему. В первых четырех изданиях парадокс обсуждается в терминах поглощения света от далеких звезд. В пятом издании (1861 год) Медлер пишет, что в бесконечной Вселенной, заполненной бесчисленным количеством звезд, все небо должно сиять как Солнце. Этого нет и, следовательно, должно быть расстояние, начиная с которого свет звезд до нас не доходит. Далее, ссылаясь на Ольберса, он упоминает поглощение света, как возможный механизм такой блокировки излучения. Затем следуют слова: «Действительно, такое расстояние существует, но причина совсем в другом. Скорость света конечна; конечное время прошло от начала Творения до наших дней и мы, следовательно, можем наблюдать небесные тела только до расстояния, которое свет прошел в течение этого конечного времени… Вместо того, чтобы говорить, что свет с этих расстояний не дошел до нас, надо говорить, что он еще не дошел до нас».
Приведенные слова Медлера дают четкое решение фотометрического парадокса: Вселенная конечна во времени (но может быть пространственно-бесконечной), скорость света также конечна и, следовательно, начиная с определенного расстояния, равного произведению возраста Вселенной на скорость света, свет более далеких звезд до нас еще не дошел и поэтому ночное небо остается темным.
В XIX веке решение Медлера не привлекло особого внимания. Единственным известным человеком, заметившим его, был Фридрих Энгельс. В своей «Диалектике природы» (1873–82, 1885–86 годы) он написал о приведенных выше словах Медлера как о «великолепном» возражении «против так называемого поглощения света», а предположение, «что только поглощение света способно объяснить темноту заполненного во все стороны на бесконечное расстояние светящимися звездами неба», Энгельс назвал «старомодным взглядом».
В 1895 году, после смерти Энгельса, рукопись «Диалектики природы» попала к его другу — Эдуарду Бернштейну, который ее, однако, не опубликовал. Возможной причиной этого был отзыв Эйнштейна, прочитавшего в 1924 году по просьбе Бернштейна рукопись Энгельса. К идее публикации «Диалектики» Эйнштейн отнесся в целом одобрительно, хотя, по его мнению, она не представляет особого интереса ни для физики, ни для истории физики.
Имя английского физика Уильяма Томсона, более известного как лорд Кельвин, знакомо практически каждому жителю Земли благодаря введенной им абсолютной шкале температуры — шкале Кельвина — и, соответственно, градусам Кельвина. Однако не это сделало его одним из самых выдающихся и авторитетных физиков XIX века. Как писал Эйнштейн, «одаренный богатой фантазией, редким умением применять математический аппарат и проникновенным умом, Томсон около 60 лет участвовал в развитии физики и различных отраслей техники, добыв множество результатов, сохранивших свое значение до сегодняшнего дня; немногие ученые были столь же плодотворны».