Покоренный электрон — страница 3 из 52

Для опыта ученый взял большой металлический диск, положил его на стеклянную пластинку, наэлектризовал положительным электричеством и прикрыл другим куском стекла. Затем ученый взял другой такой же металлический круг, но только снабженный стеклянной рукояткой. Этот второй круг ученый положил поверх наэлектризованного диска, как изображено на рисунке 7.

Рис. 7. Заряд металлического диска, лежащего между стеклянными пластинками, оказался неистощимым.


Разумеется, круг при этом тоже наэлектризовался, то есть в нем разделились заряды: положительные скопились на верхней стороне круга, а отрицательные — на нижней.

Положительные заряды можно было отвести в землю, просто коснувшись круга рукой, тогда на круге остались только отрицательные заряды; их нельзя было удалить, — они удерживались притяжением положительным зарядом на нижнем круге.

Ученый взял этот круг за стеклянную рукоятку, отнес его в сторону и там разрядил. Затем снова положил свой круг поверх наэлектризованного диска, круг снова наэлектризовался, а ученый отнес его в сторону и разрядил.

Исследователь проделал это в третий раз, в четвертый… Ученый носил свой круг туда и сюда, попеременно то заряжая его у диска, то разряжая в стороне. Однако заряд металлического диска, лежавшего на стеклянной пластинке, от этого нисколько не ослабел.

Опыт пришлось прекратить, так как ученый устал таскать круг взад и вперед; он убедился, что истощить заряд металлического диска таким образом невозможно!

Этим опытом было установлено, что электрический заряд, индуктируя в других предметах наведенные заряды, сам не уменьшается и не расходуется.

Все это — и явление индукции, и явная неистощимость заряда, возбуждающего другие заряды, — было непонятно.

Люди придумывали различные, по большей части совершенно необоснованные объяснения и спорили друг с другом, безуспешно стараясь отстоять каждый свое мнение.

Тогда многие физики считали, что электризация наведением является волшебным свойством электрических зарядов и они могут действовать на расстоянии, рождая другие заряды из ничего. Это мнение противоречило ломоносовскому закону сохранения материи, оно было глубоко ошибочным и заводило науку в тупик.

Электрическое поле

Удивительное явление получило правильное объяснение только тогда, когда физики поняли, что вокруг каждого наэлектризованного тела существует что-то такое, что воздействует на другие заряды. Это «что-то» ученые стали называть электрическим полем.

Электрическое поле неразрывно связано с зарядом, однако это не сам заряд. Поле составляет как бы своеобразное продолжение заряда в окружающем его пространстве. Поле отлично от заряда, но оно не менее реально, не менее материально, чем сам заряд.

Обнаружить существование электрического поля возле заряда можно весьма простым опытом. Для этого надо наклеить на стеклянную пластинку кружочек из станиоля или фольги, наэлектризовать его и посыпать мелкими игольчатыми кристалликами гипса или хинина. Кристаллики разложатся по линиям расходящимися лучами во все стороны от заряженного кружка. Если вырезать из фольги два кружка и им сообщить электрические заряды — одному положительный, а другому отрицательный, затем на стекло насыпать мелкие игольчатые кристаллики гипса, то под воздействием электрического поля иголочки гипса улягутся в определенном порядке; их расположение отчасти напоминает размещение железных опилок возле полюсов магнита (рис. 8).

Рис. 8. Кристаллики гипса расположены в определенном порядке между наэлектризованными кружками.


Одноименно заряженные кружки, когда их обсыпают гипсом, дадут картину электрического поля, изображенную на рисунке 9.

Рис. 9. Вид электрического поля между кружками, одноименно заряженными.


Благодаря гипсовым кристалликам электрическое поле между двумя наэлектризованными кружками становится видимым.

Академик А. Ф. Иоффе рассказывал, какой случай ему однажды пришлось наблюдать. Вместе с известным физиком К. Рентгеном Иоффе работал на вершине горы. И вдруг длинные волосы Рентгена распушились, а его большая борода взъерошилась так, что Рентген стал похожим на Черномора.

Внезапное превращение Рентгена в Черномора было вызвано большой тучей, проходившей в это время над вершиной горы. Туча несла с собой большой электрический заряд; между тучей и горой образовалось электрическое поле. Под влиянием этого поля волосы Рентгена расположились так же, как и кристаллики гипса между станиолевыми наэлектризованными кружочками, то есть вдоль так называемых силовых линий электрического поля.

Рис. 10. Электрическое поле между отрицательно заряженным кольцом и кружком, заряженным положительно.

Ларчик просто открывался

Тот ученый, который носил взад и вперед свой круг, попеременно то заряжая его, то разряжая, думал, что электрические заряды возникают сами собой из ничего, и это было ошибкой. Заряды не создавались — они и до опыта присутствовали в круге, как и во всяком теле. А электрическое поле только разделило их. Круги приобрели разноименные заряды. Эти заряды, а вместе с ними и сами круги, притягивались друг к другу с определенной силой.

Чтобы оторвать верхний круг от нижнего, приходилось приложить некоторое усилие, произвести работу. И когда ученый удалял верхний круг, на нем оказывался свободный заряд, обладающий заметной энергией; она проявляла себя при разряде круга в виде яркой искры.

Эта энергия создавалась тем усилием, которое затрачивал ученый, его работой.

Учитывая работу, которую приходится производить, двигая определенный заряд в поле, можно получить наиболее точное представление о силе электрического поля в каждой его точке.

Возьмем проводник в виде шара на изолирующей подставке, заряженный положительно. Если мы поднесем к нему шарик, заряженный также положительно, на него будет действовать сила отталкивания, направленная по продолжению радиуса шара. Чем больше эта сила, тем больше напряженность поля в данной точке.

На рисунке 11 расходящиеся прямые линии показывают направления сил, действующих на положительный заряд в поле положительно заряженного шара.

Рис. 11. Силовые линии и поверхности равного потенциала вокруг положительно заряженного шара.


Эти линии называют силовыми линиями.

Поднося наш заряженный шарик к большому шару, приходится совершать работу, преодолевая сопротивление электрических сил отталкивания. Чем ближе мы поднесем шарик к шару, тем больше совершенная нами работа. Величину, пропорциональную этой работе, назвали потенциалом.

Очевидно, на одинаковых расстояниях от шара потенциал одинаков.

На рисунке замкнутые линии соединяют точки, в которых потенциал одинаков. На плоском чертеже это — окружности, а в пространстве — сферы. Поверхности; для которых потенциал одинаков, называют поверхностями уровня потенциала. Силовые линии и поверхность уровня дают представление о поле.

Разумеется, и силовые линии и поверхности уровня в действительности не существуют. Это только воображаемые линии и воображаемые поверхности, которые нам нужны для изображения сил, действующих в электрическом поле так же, как меридианы и параллели на земном глобусе нужны для указания местоположения и в действительности тоже не существуют.

Силовая линия показывает направление, в котором начнет двигаться положительный заряд, помещенный в данную точку поля. Отрицательный заряд движется в противоположном направлении.

Поверхности уровня позволяют оценить величину работы, которая совершается при перемещении определенного положительного заряда из одной точки поля в другую. Для перемещения зарядов по поверхности уровня не нужно усилий, не нужна затрата работы. Переместить положительный заряд с поверхности более низкого потенциала на поверхность более высокого потенциала можно только посторонней силой, производя работу против сил поля. Обратный переход на более низкий уровень потенциала совершается силами самого поля, за счет энергии этого поля. Поле двух разноименных зарядов изображено на рисунке 12 — оно значительно сложнее, чем поле одиночного заряда, силовые линии его искривлены.

Рис. 12. Силовые линии и поверхности уровня потенциала в электрическом поле вокруг двух разноименно заряженных шариков.

Единица заряда

Постоянно наблюдая взаимодействие зарядов — их притяжение и отталкивание, ученые пришли к мысли, что сила притяжения или отталкивания может быть измерена. Ломоносов еще в 1756 году указывал, что «электрическая сила с помощью весов определена быть может».

Сила, с которой притягиваются или отталкиваются два электрических заряда, была «взвешена» французским ученым Шарлем Кулоном в 1785 году. Кулон изобрел весьма точный и чувствительный измерительный прибор, построенный по образцу крутильных весов.

Для изготовления этого прибора Кулон воспользовался круглой стеклянной банкой. Снаружи на банку он наклеил шкалу в виде узкой ленточки с нанесенными на нее градусными делениями, а внутри банки поместил легкую стрелочку, подвешенную на длинной шелковой нити. На тупом конце стрелки Кулон укрепил легкий шарик.

С помощью головки в верхней части прибора можно было поворачивать шелковую нить, а вместе с ней и стрелку с шариком (рис. 13).

Рис. 13. Прибор Кулона.


Другой точно такой же шарик Кулон прикрепил к стеклянному стерженьку величиной с карандаш. Сквозь отверстие в крышке стерженек можно было опускать в банку и доставать его, когда он не был нужен.

Начиная измерение, Кулон установил стрелку так, чтобы подвешенный шарик слегка касался шарика на стерженьке, затем он сообщил этому шарику электрический заряд.

Оба шарика, соприкоснувшись, поделили заряд поровну и, приобретя, таким образом, одноименные заряды, начали отталкиваться. Стрелочка же, преодолевая упругое сопротивление шелковой нити, повернулась.

Кулон измерил, на сколько градусов она повернулась в результате взаимодействия зарядов. Затем он вынул из банки стерженек. При этом стрелка прибора, разумеется, вернулась на прежнее место.