m и n, можно выделить из числа А два взаимно простых нечетных множителя k и k (k>l), положив
m + n = k, m — n = l,
что дает
m = 1/2 (k + l), n = 1/2 (k — l).
После этого мы проверяем, удовлетворяют ли эти числа условиям (5.3.8).
Рассуждения несколько упрощаются, если заметить, что два множителя в выражении (5.3.8) могут равняться 1 только в единственном случае:
m = 2, n = 1, A = 6.
Действительно, два множителя в (5.3.8) могут быть равны 1, только если
n = m — n = 1,
что и дает указанное выше значение.
Пример. Найдем все треугольники Пифагора с площадью А = 360. Разложение числа А на простые множители таково: A = 23 32 • 5. Число А может быть единственным образом записано в виде произведения четырех взаимно простых множителей: А = 8 • 1 • 5 • 9. Если мы ищем простейший треугольник, то m + n = 9. Однако если m = 8, то n = 1 и m — n= 7, но А не делится на 7, а вторая возможность (n = 8, m = 1) исключается условием >n. Поэтому такого треугольника не существует.
Этот результат не исключает возможности существования треугольников с площадью А = 360, не являющихся простейшими. Следующее соображение может быть использовано в общем случае для нахождения треугольников заданной площади, не являющихся простейшими. Если длины всех сторон треугольника имеют общий делитель d, т. е. могут быть записаны как
dx, dy, dz,
то его площадь равна
А = 1/2 dx dy = d2mn (m — n) (m + n).
Таким образом, число d2 является множителем числа А и, если число d есть наибольший общий делитель длин сторон, то число
А0 = A/d2 = mn (m — n) (m + n)
должно быть площадью простейшего треугольника.
Применим полученный результат к только что рассмотренному случаю А = 360. У этого числа существуют три множителя, являющиеся квадратами;
d1 = 4, d2 = 9, d3 = 36.
Соответственно находим
A/d1 =90 = 2 • 32 • 5, A/d2 = 40 = 23 • 5, A/d3 = 10 = 2 • 5.
Не существует способов написать число 40 или 10 в виде произведения четырех взаимно простых множителей, а число 90 может быть представлено в таком виде, причем единственным образом, а именно:
90 = 1 • 2 • З2 • 5.
(В числе сомножителей 1 может встречаться не более одного раза, за исключением случая m = 2, n = 1, А = 6.) Так как наибольшим множителем является 9, то мы должны взять m + n = 9. Однако, перебирая все возможные значения m = 1, 2, 5, получим соответственно n = 8, 7, 4. Условие m >n исключает все случаи, кроме m = 5, n = 4, для которого, однако, mn (m + n) (m — n) ≠ 90. Итак, мы получили, что не существует ни простейшего, ни иного треугольника Пифагора с площадью А = 360.
Можно было бы затронуть еще много других вопросов, но упомянем лишь об одном из них. Периметр треугольника равен
c = x + y + z; (5.3.9)
для простейшего треугольника Пифагора получаем
с = 2mn + (т2 — n2) + (m2 + n2) = 2n (m + n).
Мы предоставляем читателю самому отыскать метод нахождения всех треугольников Пифагора с заданным периметром. Не пренебрегайте рассмотрением
числовых примеров.
Мы решили задачу построения всех треугольников Пифагора. Это ведет нас к исследованию более общих связанных с ней задач. Естественным обобщением задачи Пифагора является задача Герона, названная по имени древнегреческого математика Герона, жившего в Александрии: найти все треугольники с целочисленными сторонами, площади которых также выражаются целыми числами. Эта задача отличается от задачи Пифагора тем, что условие наличия прямого угла заменено требованием целочисленности площади. Очевидно, что всякий треугольник Пифагора удовлетворяет условиям задачи Герона.
Для проверки того, является ли данный треугольник треугольником Герона, проще всего применить формулу Герона для площади треугольника,
где с — это периметр треугольника, определенный в (5.3.9). Хотя известно значительное число треугольников Герона, не существует общей формулы, описывающей все эти треугольники. Приведем несколько из них (не прямоугольных):
x = 7 y = 15 z = 20
9 10 17
13 14 15
39 41 50
Мы не можем закончить рассказ о треугольниках Пифагора, не упомянув об одной из самых знаменитых проблем математики, гипотезе П. Ферма:
для n> 2 не существует натуральных чисел x, у, z таких, что
хn + уn = zn.
Эта идея пришла к Ферма в то время, когда он изучал перевод с греческого «Арифметики» Диофанта. В этой книге в основном рассматриваются задачи, в решении которых применяются формулы для нахождения треугольников Пифагора. Читая эту книгу, Ферма делал пометки на нолях.
Ферма был взволнован своим «открытием», он верил, что у него есть удивительное доказательство, и сожалел, что не может его записать, так как поля слишком узки. С тех пор эта задача занимает математиков. Для нахождения доказательства изобретались самые искусные методы; этот поиск привел к открытию новых фундаментальных теорий в математике. Используя теоретические разработки и вычисления на ЭВМ, было показано, что теорема Ферма справедлива для многих значений степени n. В настоящее время мы знаем, что этот результат выполняется для всех значений n, удовлетворяющих неравенству 3 ≤n≤ 4002.
Попытки самых выдающихся математиков в течение столетий найти общее доказательство оказались тщетными. Поэтому распространилось мнение, что Ферма, несмотря на свой бесспорный талант, стал жертвой самообмана. Как бы ни широки были поля книги, маловероятно, что его доказательство было бы верным.
Конечно, вы имеете право попробовать свои силы в доказательстве этой теоремы, но предупреждаем, что еще ни одна теорема в математике не имела столько неправильных доказательств, как теорема Ферма. Лишь некоторые из них принадлежат хорошим математикам, остальные — дилетантам. Доказательства «последней теоремы Ферма» продолжают появляться в почте известных математиков, занимающихся теорией чисел. Большинство из этих доказательств сопровождается письмами с требованием о немедленном всемирном признании и выплате денежной премии, установленной одним немецким математиком (эта премия давно уже обесценилась в результате инфляции).
Система задач 5.3.
1. Найдите все такие треугольники Пифагора, у которых длина одной из сторон равна: а) 50, б) 22.
2. Используя условие представимости числа в виде суммы двух квадратов, определите, какие из чисел 100, 101…, 110 могут быть представлены в таком виде. Если возможно, найдите все представления. Какое из этих чисел может быть гипотенузой простейшего треугольника Пифагора?
3. Могут ли быть треугольниками Пифагора треугольники с площадями А = 78, A = 120, А = 1000?
4. Найдите все треугольники Пифагора с периметрами с = 88, с = 110.
ГЛАВА 6СИСТЕМЫ СЧИСЛЕНИЯ
§ 1. Числа
«Все есть число» — учили древние пифагорейцы[8]. Однако количество чисел, которыми они пользовались, ничтожно по сравнению с фантастической пляской цифр, окружающих нас сегодня в повседневной жизни. Огромные числа появляются, когда считаем мы, и тогда, когда считают нас. В нашу жизнь прочно вошли: номера домов, квартир, телефонов, счетов, почтовые индексы. Каждый день наполнен потоком счетов, чеков и других бухгалтерских документов. Государственный бюджет исчисляется в миллиардах, а горы статистических данных являются принятым доводом в спорах. Эти цифры «крутятся» в компьютерах, которые анализируют состояние производства, следят за траекториями спутников и исследуют атомные ядра со скоростью до одного миллиарда операций в секунду.
Ко всему этому вела длинная дорога, начавшаяся с первых попыток человека систематизировать окружающие его числа, когда они стали столь большими, что их нельзя уже было посчитать на пальцах. Были перепробованы различные способы группировки чисел; большинство из них осталось на обочине этого пути, не выдержав конкуренции с другими системами. К настоящему времени, по счастью, наша десятеричная, или десятичная, система счисления, основанная на группировании десятками, принята почти всюду; в некотором отношении эта система, по-видимому, случайно, оказалась той золотой серединой, которая одинаково хорошо удовлетворяет разнообразным требованиям при работе с числами.
Нет необходимости подробно описывать эту систему. Первые два года обучения в школе дают нам на всю жизнь почти подсознательное знание того, что означает последовательность цифр, например,
75 = 7 • 10 + 5,
1066 = 1 • 103 + 0 • 102 + 6 • 10 + 6,
1970 = 1 • 103 + 9 • 102 + 7 • 10 + 0.
И вообще, в системе, основанной на числе 10,
_________________
аn