Приглашение в теорию чисел — страница 5 из 21

Начнем с простого числа 2. Будем выбрасывать каждое второе число, начиная с 2 (кроме самого числа 2), т. е. чётные числа 4, 6, 8, 10 и т. д., подчеркивая каждое из них. После этой операции первым неподчёркнутым числом будет число 3. Оно простое, так как не делится на 2. Оставив число 3 неподчёркнутым, будем подчеркивать каждое третье число после него, т. е. числа 6, 9, 12, 15…; некоторые из них уже были подчеркнуты, поскольку они являются чётными. На следующем шаге первым неподчёркнутым числом окажется число 5; оно простое, так как не делится ни на 2, ни на 3. Оставим число 5 неподчёркнутым, но подчеркнем каждое пятое число после него, т. е. числа 10, 15, 20, 25…; как и раньше, часть из них уже оказалась подчёркнутой. Теперь — наименьшим неподчёркнутым числом окажется число 7. Оно простое, так как не делится ни на одно из меньших его простых чисел 2, 3, 5. Повторяя этот процесс, мы в конце концов получим последовательность неподчёркнутых чисел; все они (кроме числа 1) являются простыми.

Этот метод отсеивания чисел известен как «решето Эратосфена». Любая таблица простых чисел создается по этому принципу решета. В действительности, можно продвинуться гораздо дальше по ряду простых чисел, если использовать для их хранения память ЭВМ. Подобным образом, в Научно-исследовательской лаборатории Лос-Аламоса были получены все простые числа до 100 000 000.

Небольшое изменение метода решета позволит нам получить большую информацию. Предположим, что всякий раз, впервые подчеркивая числа, мы будем подписывать под ним простое число, с помощью которого оно отсеивается. Тогда 15 и 35 были бы записаны как

15, 35 

 3   5

и т. д., как это показано на последовательности, выписанной выше. Таким образом, мы не только указали простые числа, но и для каждого составного числа привели наименьшее простое число, являющееся его делителем. Такой список чисел называется таблицей делителей. Таблица делителей является более сложной, чем таблица простых чисел. Чтобы немного упростить ее, обычно из нее исключают те составные числа, у которых простые делители малы, например, 2, 3, 5, 7. Самая большая такая таблица была вычислена на ЭВМ Д. X. Лемером и содержит все числа, вплоть до 10 000 000.

Как мы видели, решето Эратосфена может быть использовано для построения таблиц простых чисел и таблиц делителей. Однако оно может быть использовано и для теоретических исследований. Многие важные результаты в современной теории чисел были получены методом решета. Приведем результат, известный еще Евклиду:

Существует бесконечное число простых чисел.

Доказательство. Предположим, что существует только k простых чисел:

2, 3, 5…, рk.

Тогда в решете не оказалось бы неподчёркнутых чисел, больших, чем рk. Но это невозможно, так как произведение этих простых чисел

р = 2 • 3 • 5 • … • рk

будет отсеиваться k раз, по разу для каждого простого числа, поэтому следующее число р + 1 не может быть подчеркнуто ни для одного из них.


Система задач 2.4.

1. Составьте таблицы простых чисел для каждой из сотен: 1—100, 101–200, … 901—1000.

2. Попытайтесь определить количество простых чисел в диапазоне 10001—10100.

ГЛАВА 3ДЕЛИТЕЛИ ЧИСЕЛ

§ 1. Основная теорема о разложении на множители

Любое составное число с может быть записано в виде произведения с = ab, причем ни один из делителей не равен 1 и каждый из них меньше, чем с; например,

72 = 8 • 9, 150 = 10 • 15.

При разложении числа с на множители один из них, и даже оба (а и b) могут оказаться составными. Если а — составное, то разложение на множители можно продолжить:

а = a1a2, с = a1 • a2 • b.

Примерами этого могут служить рассмотренные выше числа

72 = 2 • 4 • 9, 150 = 2 • 5 • 15.

Этот процесс разложения на множители можно продолжить до тех пор, пока он не закончится; это должно произойти, так как делители становятся все меньше и меньше, но не могут стать единицей. Когда ни один из делителей нельзя уже будет разложить на множители, то все делители будут простыми числами.

Таким образом мы показали, что

Каждое целое число, большее 1, является простым числом или произведением простых чисел.

Последовательное разложение числа на множители может быть выполнено многими способами. При этом можно использовать таблицу делителей. Сначала найдем наименьшее простое число р1, делящее число с, так что с = р1с1. Если с1 — составное число, то по таблице делителей найдем наименьшее простое число р2, делящее с1, так что

c1 = р2с2,   c = p1 • p2 • с2.

Затем найдем наименьший простой делитель числа с2 и т. д.

Но главное здесь то, что независимо от способа разложения числа на простые множители результат всегда будет одним и тем же, различаясь лишь порядком их записи, т. е. любые два разложения числа на простые множители содержат одни и те же простые числа; при этом каждое простое число содержится одинаковое число раз в обоих разложениях.

Этот результат мы можем кратко выразить следующим образом:

разложение числа на простые множители единственно.

Возможно, что вы так часто слышали об этой так называемой «основной теореме арифметики» и пользовались ею, что она представляется вам очевидной, но это совсем не так. Эта теорема может быть доказана несколькими различными способами, однако ни один из них не тривиален. Здесь мы приведём доказательство, используя способ «от противного», который часто называют его латинским названием reductio ad absurdum (приведением к абсурду). Этот способ заключается в следующем: предположив ложность теоремы, которую нужно доказать, показывают, что это предположение приводит к противоречию.

Доказательство. Предположим, что наша теорема о единственности разложения на множители неверна. Тогда должны существовать числа, имеющие по крайней мере два различных разложения на простые множители. Выберем из них наименьшее и обозначим его через с0. Для небольших чисел, скажем, меньших 10, истинность теоремы можно установить прямой проверкой. Число с0 имеет наименьший простой множитель р0, и мы можем записать:

c0 = p0 d0.

Так как d0<c0, то число d0 единственным образом раскладывается на простые множители. Отсюда следует, что разложение числа c0 на простые множители, содержащее число р0, единственно.

А так как, по предположению, имеется по крайней мере два разложения числа c0 на простые множители, то должно быть разложение, не содержащее число р0. Наименьшее простое число в этом разложении мы обозначим через р1 и запишем

c0 = p1d1. (3.1.1)

Так как p1>p0, то d1<d0 и, следовательно, p0d1<c0. Рассмотрим число

c0' = c0p0d1 = (p1 - p0) • d1. (3.1.2)

Так как оно меньше, чем число c0, то оно должно раскладываться на простые множители единственным способом; при этом простые множители числа c0 состоят из простых множителей чисел p1 - p0 и d1. Так как число c0 делится на p0, то из выражения (3.1.2) следует, что число c0' также делится на p0. Следовательно, p0 должно быть делителем либо числа d1, либо p1 - p0. Но любой простой делитель числа d1 больше, чем p0, так как p1 — наименьшее простое число в разложении (3.1.1). Таким образом, остается единственная возможность: p0 должно быть делителем числа p1 - p0 и, следовательно, оно делит p1. Итак, мы пришли к противоречию, потому что p1 является простым числом и не может делиться на другое простое число p0.

Выше мы отмечали, что единственность разложения числа на простые множители совсем не очевидна. В действительности, существуют «арифметики», в которых аналогичная теорема не выполняется. Простейшим примером такой арифметики может служить арифметика четных чисел

2, 4, 6, 8, 10, 12…

Некоторые из них могут быть разложены на два четных множителя, а другие — нет; последние мы называем чётно-простыми числами. Это числа, которые делятся на 2, но не делятся на 4:

2, 6, 10, 14, 18….

Очевидно, что каждое четное число либо является четно-простым, либо записывается в виде произведения чётно-простых чисел. Но такое разложение на чётно-простые числа не всегда будет единственным. Например, число 420 может быть разложено на четно-простые числа различными способами:

420 = 6 • 70 = 10 • 42 = 14 • 30.


Система задач 3.1.

1. Найдите разложение на простые множители каждого из чисел 120, 365, 1970.