Приключения Алисы в Стране Головоломок — страница 12 из 23

— Надеюсь, считает, — предположила Алиса, — или нет?

— Вообще-то, — рассмеялся Шалтай-Болтай, — нечестно с моей стороны было задавать тебе последний вопрос, так что можешь не трудиться, все равно не ответишь.

— А остальные честно было задавать? — спросила Алиса.

— Абсолютно, — ответил он. — Все остальные вопросы были абсолютно справедливыми.

— Мне они все кажутся одинаково непонятными! — сказала Алиса, — и я все равно не понимаю эту зазеркальную логику!

Если и вы, мой читатель, подобно Алисе, находитесь в некоторой растерянности по поводу зазеркальной логики, вряд ли вас можно в этом упрекнуть! И все же ключ ко всей этой загадке почти смехотворно прост. В этот раз я не буду приводить ответы к этим головоломкам в конце книжки, а вместо этого включу их в диалог между Шалтаем-Болтаем и Алисой.

— Итак, — объявил Шалтай-Болтай, — хватить болтать, пора приступать к выведению ключа!

— Но я даже не представляю, с чего начать!

— Подумай вот о чем, — предложил Шалтай-Болтай. — Может ли зазеркальный логик быть убежден в истинном суждении?

— Почему нет? — спросила Алиса.

— А ты помнишь, что я доказывал тебе ранее? Когда зазеркальный логик в чем-то убежден, то он одновременно убежден в том, что он в этом не убежден.

— Да-а, — неуверенно протянула Алиса, — но я уже подзабыла это доказательство. Не могли бы вы напомнить?

— Без проблем, — ответил он. — Возьмем любое суждение, в истинности которого зазеркальный логик убежден. Поскольку он убежден в истинности этого суждения, он будет его утверждать (согласно первому условию), следовательно, он также будет утверждать, что не убежден в его истинности (согласно второму условию), следовательно, он убежден в том, что он в нем не убежден (согласно первому условию).

— Да, да, — закивала Алиса, — теперь я вспомнила!

— Чтобы больше не забывать, запиши эту мысль в свой блокнот и обозначь ее как Утверждение 1.

Алиса записала следующее:

«Утверждение 1. Когда зазеркальный логик в чем-то убежден, он также убежден в том, что он в этом не убежден».

— Дальше важно понимать, — продолжал Шалтай-Болтай, — что в отношении любого истинного суждения, зазеркальный логик убежден в том, что он убежден в истинности этого суждения.

— Почему так? — спросила Алиса.

— Это же элементарно! — ответил Шалтай-Болтай. — Возьми любое истинное суждение. Согласно третьему условию, он утверждает, что убежден в истинности этого суждения. Раз он это утверждает, и он честен (первое условие), значит, он убежден в том, что он в нем убежден.

— Понятно, — кивнула Алиса.

— Ты лучше это запиши, и обозначь, как Утверждение 2, — посоветовал Шалтай-Болтай.

И Алиса записала следующее:

«Утверждение 2. В отношении любого истинного суждения, зазеркальный логик убежден в том, что он убежден в истинности этого суждения».

— А теперь, — продолжал Шалтай-Болтай, — ты понимаешь, почему абсолютно невозможно, чтобы зазеркальный логик был убежден в истинности истинного суждения?

— Не очень, — призналась Алиса.

— Это очевидно следует из Утверждения 1, Утверждения 2 и четвертого условия, — ответил он. — Возьми любое суждение, в истинности которого зазеркальный логик убежден. Согласно Утверждению 1, он убежден в том, что он не убежден в истинности этого суждения. При этом он не может одновременно быть убежден в том, что он убежден в ис-

тинности суждения (потому что, согласно четвертому условию, он не может быть убежден в чем-то и одновременно быть убежден в обратном). Так как он не убежден в том, что он в нем убежден, тогда это суждение не может быть истинным, ведь будь оно истинно, тогда, согласно Утверждению 2, он должен был бы быть убежден в том, что он убежден в истинности этого суждения. Но он не убежден в том, что он в нем убежден — и поэтому оно не может быть истинным. Таким образом, мы видим, что зазеркальный логик никогда не бывает убежден ни в одном истинном суждении; все суждения, в которых зазеркальный логик убежден — ложны.

Алисе понадобилось определенное время, чтобы усвоить сказанное.

— Это довольно сложное доказательство! — заметила она, наконец.

— Ничего, скоро освоишься! Алиса снова задумалась.

— А скажите мне вот что, — попросила она. — Зазеркальный логик должен быть убежден во всех ложных суждениях? Или же он просто убежден только в ложных суждениях?

— Это хороший вопрос, девочка, — ответил Шалтай-Болтай, — и ответ на него — «да». Возьми любое ложное суждение. Согласно пятому условию, он убежден либо в истинности этого суждения, либо в истинности противоположного ему суждения. Но он не может быть убежден в противоположном суждении, потому что противоположное суждение истинно! Соответственно, он убежден в истинности ложного суждения.

— Невероятно! — воскликнула Алиса. — Значит, зазеркальный логик убежден в истинности всех ложных суждений и не верит ни одному истинному суждению!

— Точно, — подтвердил Шалтай-Болтай, — и в этом вся прелесть!

— Еще один интересный момент, — добавил Шалтай-Болтай, — заключается в том, что любой, кто верит всем ложным суждениям и не верит ни одному истинному суждению и кто честно высказывает свои убеждения — любой такой человек должен соответствовать пяти основным условиям, характеризующим зазеркального логика.

— Это почему же? — спросила Алиса.

— О, это очень просто доказать! — ответил Шалтай-Болтай. — Предположим, человек абсолютно честен и одновременно убежден в истинности тех, и исключительно тех суждений, которые ложны. Поскольку он честен, то разумеется он отвечает первому условию. Что касается второго условия, предположим, он утверждает, что суждение истинно. Тогда он действительно убежден в истинности этого суждения (ведь он честен). Следовательно, ложно то, что он не убежден в истинности суждения. Но ведь он убежден во всем, что ложно — и даже в ложных суждениях о его собственных убеждениях! Стало быть, если ложно то, что он не убежден в истинности суждения, и если он убежден во всем, что ложно, тогда он должен быть убежден и в ложном факте, что он не убежден в истинности суждения — другими словами, он убежден в том, что он не убежден в истинности суждения. А раз он убежден в том, что он не убежден в истинности суждения, то он утверждает, что он в нем не убежден (потому что, как мы помним, он честен). Именно поэтому он удовлетворяет второму условию.

Что касается третьего условия, возьмем любое истинное суждение. Раз оно истинно, он не может быть убежден в его истинности. Раз он не убежден в его истинности, значит, он должен считать, что он убежден в его истинности (потому что все его убеждения ошибочны!). Далее, раз он считает, что он в нем убежден, то он должен это утверждать (опять же, потому что он честен). Это и доказывает то, что он отвечает третьему условию.

Ну, четвертое и пятое условия очевидны, — продолжал Шалтай-Болтай.— Рассмотрим любое суждение и противоположное ему суждение. Одно из них должно быть истинно, другое, соответственно, должно быть ложно. Естественно, он убежден в истинности ложного суждения и не убежден в истинности истинного суждения. Значит, он не убежден в истинности обоих суждений сразу и таким образом удовлетворяет четвертому условию, но убежден по крайней мере в одном из них и поэтому отвечает пятому условию.

— Вот и вся история, — подвел итог Шалтай-Болтай, — зазеркальный логик честен, просто он всегда заблуждается. И наоборот, любой, кто честен и постоянно заблуждается, отвечает всем пяти характеристикам зазеркального логика. Теперь ключ у тебя в руках.

— Кое-что мне все еще непонятно, — сказала Алиса. — Почему никогда не случается так, чтобы зазеркальный логик что-то утверждал, а потом утверждал что-то этому обратное, и при этом сплошь и рядом случается, что он объявляет какое-то суждение и обратное ему суждение истинными?

— Это проще простого, — ответил Шалтай-Болтай. — Возьмем, к примеру, утверждение, что Черный Король спит. Обратным ему утверждением было бы утверждение о том, что Черный Король бодрствует. Очевидно, что одно из этих утверждений истинно, а другое ложно. Зазеркальный логик убежден лишь в одном из них, которое ложно, следовательно, он не может быть убежден в истинности каждого из них по отдельности. При этом единое утверждение о том, что Черный Король одновременно спит и бодрствует, является ложным утверждением, следовательно, зазеркальный логик должен быть убежден в истинности этого ложного утверждения.

Вернемся теперь к моим десяти вопросам. Обладая ключом, ответить на них не составит особого труда.

Вот ответы, которые Шалтай-Болтай дал на свои десять вопросов.

1. Раз зазеркальный логик считает, что Черный Король спит, значит, Черный Король должен на самом деле бодрствовать. Раз он бодрствует, то Алиса ему не снится. Раз Алиса Королю не снится, значит, зазеркальный логик должен считать, что снится.

2. Раз он (зазеркальный логик) считает, что либо Черный Король, либо Черная Королева спит, то на самом деле ни Черный Король, ни Черная Королева не спят. Значит, оба они бодрствуют. Раз Черная Королева бодрствует, то он должен считать, что она спит (по тому же принципу он должен считать, что Черный Король спит).

3. Зазеркальный логик полагает, что Черный Король спит. Это лишь означает, что Черный Король бодрствует, но ничего нам не говорит о том, спит ли Черная Королева, поэтому мы не можем знать, считает ли зазеркальный логик, что она спит.

4. А вот здесь совсем другая история! Поскольку он полагает, что Черный Король спит, значит, это неправда, что он спит. Следовательно, заведомо ложно то, что Черный Король и Черная Королева оба спят! Именно поэтому он должен быть убежден, что они оба спят.

Любопытно здесь то, что он вовсе необязательно должен считать, что Черная Королева спит, однако он действительно убежден, что Черный Король и Черная Королева оба спят!

5. Зазеркальный логик полагает, что Черный Король и Черная Королева оба спят, из чего следует лишь, что по меньшей мере один из них бодрствует. Мы не знаем, кто именно, поэтому мы не можем определить, считает ли зазеркальный логик, что Король спит.