Природа и общество. Модели катастроф — страница 38 из 56

Такая формулировка может показаться произвольной – с точки зрения обычных представлений о "неограниченной конкуренции" производителей, интересы которых кажутся противоположными. Конечно, если думать о благе общества в целом, то подобные постановки вопроса вполне естественны. Но для введения правил, подчиняющих частные интересы общественному интересу, нужно далеко идущее гражданское согласие по поводу этих правил – например, кто будет их устанавливать и наблюдать за их выполнением. Хорошо известно, что произвольное и некомпетентное регулирование хозяйственной жизни приводит к разорительным экспериментам, присвоившим себе название "социализма", а при меньшей интенсивности государственного вмешательства – к засилью бюрократии и подавлению экономической инициативы. Но оказывается, что правильный учет различных интересов позволяет в ряде случаев найти решения, выгодные для всех участвующих сторон и наилучшие возможные при данных природных условиях. Этот факт, иллюстрируемый дальше на примере поставленной выше простой задачи, может бросить новый свет на издавна популярный среди социологов и философов вопрос о "природе человека".

В самом деле, многие из них исходят из принципа, что "человек зол" и всегда стремится удовлетворить свои интересы за счет другого, и что не существует честной торговли. Разумеется, если распределение экономических и экологических благ осуществляется произвольными методами, то можно дойти до прямого насилия, и не всегда удается доказать "заинтересованным сторонам", что агрессивное поведение обычно не приносит успеха агрессору, а идет на пользу какой-нибудь "третьей" стороне, или даже – парадоксальным образом – побежденным на поле сражения, берущим реванш в мирном экономическом соревновании. Но мы предположим, что люди решают хозяйственные вопросы мирным путем, посредством взаимных компромиссов, и посмотрим, что из этого может получиться в описанной выше "конфликтной" ситуации.

Прежде всего, мы будем считать, что при любом осуществимом на практике распределении участков (которые мы условно назвали "долинами") потребности общества полностью удовлетворяются, то есть производится в точности столько сельскохозяйственной продукции и гидроэнергии, сколько требует уже установившийся рынок. В самом деле, если бы производилось, например, меньше сельскохозяйственной продукции, чем можно продать, то нашлись бы желающие использовать долины, менее выгодные для земледелия, и граница области А на рис.3 сдвинулась бы влево; точно так же, граница области В устанавливается так, чтобы в точности удовлетворялась потребность в энергии.

Будем считать, для простоты, что "полезность" сельскохозяйственной продукции Q1, измеряемая ее рыночной ценой, одна и та же для всех долин, и точно так же одинакова цена их энергетической продукции Q2. [Конечно, это упрощенное предположение принимается лишь для того, чтобы не вводить сложного математического аппарата. Мы демонстрируем здесь методы, имеющие гораздо более широкие применения] Обозначая через S1 трудовые затраты на сельскохозяйственную продукцию данной долины, мы ввели выше ее "удельную полезность" П1, т.е. цену продукции в расчете на единицу трудовых затрат

откуда

В отличие от Q1, величины S1 и П1 различны для разных долин, так как природные условия в них неодинаковы (для удобства исследования мы можем так выбрать размеры участков, именуемых "долинами", чтобы сделать равной их производительность, но природные условия от нас не зависят!). Точно так же, для энергетической продукции долины имеем

,

где Q2, как мы предположим, одна и та же для всех долин, а S2 и П2 различны. Заметим, что если, как это было сделано выше, размеры участков выбраны таким образом, чтобы у них была одинаковая сельскохозяйственная полезность Q1, то отсюда, конечно, не следует, что их энергетическая полезность Q2 тоже будет одинакова. Поэтому сделанные выше предположения заведомо относятся к частному случаю интересующей нас задачи. Общий случай также поддается решению – аналогичным методом – но мы ограничиваемся частным случаем для упрощения математического аппарата. На наших рисунках долины характеризуются точками с координатами П1, П2, то есть их "удельными полезностями" для обоих видов продукции.

Рассмотрим теперь простую сделку – обмен двух долин: предположим, что из первой долины работавшие там крестьяне переходят во вторую, где работали строители, а те переходят в первую долину. Поскольку, как мы предположили, производительность всех долин по каждому виду продукции одна и та же, такой обмен не противоречит наложенному выше условию полного обеспечения рынка. Для первой долины сохраним прежние обозначения трудовых затрат S1 и удельной полезности П1, а для второй (теперь используемой крестьянами) обозначим трудовые затраты через S1', а удельную полезность через П1'. Тогда приращение трудовых затрат на сельскохозяйственную продукцию в результате обмена равно S1' – S1, причем, в соответствии с математическим способом выражения, "приращение" может быть положительным или отрицательным, в зависимости от того, возрастает S1 или убывает. Приращение некоторой величины обозначается знакомΔ :Δ S читается как "приращение S". Поскольку мы имели для первой долины S1 = Q11, а для второй аналогично S1' = Q11' (Q во всех долинах одно и то же!), получаем

Точно так же, для строителей, переходящих из второй долины в первую, приращение трудовых затрат на производство энергии равно

Очевидно, обмен возможен лишь в том случае, если он выгоден обеим сторонам (напомним, что допускаются лишь добровольные сделки!). Можно указать два случая, когда обмен будет обоюдно выгоден и потому будет в самом деле происходить. Первый случай – когда обмен снижает трудовые затраты обеих сторон, то есть когда оба приращения S1, S2 отрицательны. Второй случай – когда одно из этих приращений положительно, а другое отрицательно, так что выигрывает от обмена лишь одна сторона: пусть выигрывают, например, крестьяне, а гидростроители проигрывают, то есть ΔS1< 0, но ΔS2> 0. Казалось бы, гидростроители никогда не согласятся на такой обмен. Но рассмотрим частный случай, когда выполнено неравенство

ΔS1 + ΔS2< 0

(заметим, что оно выполнено и в рассмотренном выше первом случае!). Тогда абсолютная величина первого (отрицательного) приращения ΔS1 больше второго (положительного) приращения ΔS2, как это видно из предыдущего неравенства (проверьте это заключение, вспомнив смысл абсолютной величины – см. также наглядную схему на рисунке 4):

Это значит, что крестьяне получат от обмена выгоду, б`oльшую, чем убыток строителей. Тогда они могут затратить часть этой выгоды, компенсировав строителям их потери, и даже с некоторым избытком, так что обмен окажется выгодным для обеих сторон. Вот поучительный пример честной торговли! Точно то же произойдет, если от обмена непосредственно выиграют строители, а проиграют крестьяне. Оба рассмотренных выше случая (первый и второй, с его двумя вариантами, в зависимости от того, кто выигрывает) суммируются одним и тем же неравенством ΔS1 + ΔS2< 0.

Рис.4

Если это условие выполнено, то обмен будет выгоден для обеих сторон (при надлежащей компенсации), и потому будет происходить. Но при таком обмене общая сумма трудовых затрат на всю продукцию (и сельскохозяйственную, и энергетическую) уменьшится: в самом деле, уменьшение затрат для крестьян, по наложенному условию, превосходит увеличение затрат для строителей (когда эти последние увеличиваются от обмена), а кроме двух обмениваемых долин, в остальных местах затраты вовсе не меняются. Итак, если Si означает полную сумму затрат на всю сельскохозяйственную продукцию, а SII – полную сумму затрат на всю энергию, то, при условии

ΔS1 + ΔS2< 0.

сумма SI + SII уменьшается вследствие обмена.

Вспомним теперь, что в зонах А и В (рис.3) выгодно, соответственно, только сельское хозяйство (в А) и только гидростроительство (в В). Вся трудность состоит в разделе спорной области, где возможны оба вида производства, то есть в определении границы между зоной сельского хозяйства К и зоной гидростроительства L (см. там же, на рис.3). Можно ожидать, что долины будут предметом сделок – купли и продажи – которые в конечном счете сведутся к описанным выше операциям обмена, с возможной компенсацией. Как мы видели, такие обмены обоюдно выгодны и, следовательно, несомненно будут происходить, если выполнено приведенное выше условие ΔS1 + ΔS2< 0.

Ясно, что чем больше по абсолютной величине отрицательная левая часть этого неравенства, тем выгоднее обмен, так как обе стороны больше выигрывают в его результате. Обмены прекратятся, когда их выигрыш станет равен нулю – и тогда установится окончательная граница между зонами крестьян и гидростроителей. Естественно предположить, что последние обмены произойдут как раз вблизи этой искомой границы, так что на самой границе будет выполняться равенство ΔS1 + ΔS2 = 0.

На рисунке 5а изображен описываемый дальше случай, когда имеет смысл обменять "сельскохозяйственный" участок а, примыкающий к границе со стороны К, на "гидростроительный" участок а', также примыкающий к границе, но со стороны L.

Рис.5а Рис.5б

Подставив в неравенство ΔS1 + ΔS2< 0. полученные выше выражения для ΔS1 и ΔS2, придадим ему вид

Это и есть, в подробной записи, условие, при котором происходит обмен участков. Мы будем искать теперь удовлетворяющие ему долины около границы, отделяющей зоны К и L, где такие обмены будут вероятнее всего происходить. Неравенство (α) связывает координаты двух точек: p c координатами (П