Природа и общество. Модели катастроф — страница 4 из 56

c , Мc ( с означает "стационарность"), то Мc = Кc, и если в каком-то году популяция насчитывает в точности Кc особей, то и в следующем году их будет столько же, и через любое время – то же число. Но, конечно, такое точное равенство бывает очень редко, а на практике К может быть близко Кc Что произойдет в этом случае, мы увидим в дальнейшем, а пока рассмотрим популяцию, численность которой в первый год наблюдения K1 положительна, но меньше Кc. Чтобы предсказать численность той же популяции в следующем году, надо воспользоваться фазовой кривой: взять на ней точку Р с абсциссой К1 (рис.6), и тогда ордината M1 этой точки даст нам прогноз численности в следующем году.

Но теперь мы можем повторно воспользоваться той же фазовой кривой и предсказать численность этой же популяции еще через год. Для этого надо взять точку кривой R с абсциссой К2, равной М1, поскольку теперь M1 будет численностью исходной популяции, и найти ординату М2 точки R: это и будет численность популяции через год после того, как она была равна М1. Переход от точки графика Р к точке R можно упростить, заметив, что если ОК2 = ОМ1, то на отрезках ОК2 и ОМ1 можно построить квадрат, вершина которого Q лежит на биссектрисе (так как биссектриса как раз состоит из точек, равноудаленных от осей). Чтобы найти точку Q, достаточно построить горизонтальную прямую, проходящую через точку Р, до пересечения ее с биссектрисой – как раз в точке Q. Но точка R, по ее построению, имеет ту же абсциссу К2, что и точка Q. Поэтому, чтобы найти точку R, достаточно провести через Q вертикальную прямую, которая пересечет график в искомой точке R.

Теперь ясно, что численность популяции через год после численности M1 (то есть M2) геометрически определяется переходом из точки графика Р в другую точку графика R, который можно выполнить по следующему правилу:

Надо провести через Р горизонталь до пересечения с биссектрисой в точке Q, а затем через Q вертикаль до пересечения с графиком в точке R.

При этом можно не строить, как на рис.6, точки K1, K2 и отрезки К1Р, К2Q: достаточно следить за ординатами М1, М2. Чтобы предсказать по численности популяции М1 численность ее в следующем году, достаточно построить прямоугольник М1QRМ2. Как мы увидим дальше, повторение этой процедуры позволяет предсказать развитие популяции в целом ряде случаев.

Отрезки РQ, QR образуют с биссектрисой равные углы (в 45°), так же, как это происходит при отражении от зеркала световых лучей. Отсюда ясно, почему мы назвали только что описанный прием "отражением в биссектрисе".

Простейшие популяционные процессы

На рис.7 изображен важный и часто встречающийся вид зависимости М(К), при котором фазовая кривая выпукла, проходит через начало координат О и пересекает биссектрису координатного угла в единственной точке, обозначенной цифрой 1. Ясно, что начало координат, где К = М = 0, представляет собой точку равновесия популяции, но неинтересную, поскольку в ней популяция попросту отсутствует. Эта точка равновесия приобретает значение в тех случаях, когда точка кривой Р приближается к О: это значит, что популяция гибнет. Как видно из предыдущего анализа, при рассматриваемом виде фазовой кривой это не может произойти, так как с каждым годом численность ее

Рис.7

возрастает, во всяком случае, на дуге кривой выше биссектрисы: точка R всегда правее точки Р, то есть K2> K1 (см.рис.6). Более того, из выпуклости кривой следует, что ее хорда ОР опускается при движении точки Р вправо (этот наглядно очевидный факт можно математически доказать, но достаточно взглянуть на рис.7). Тем самым, убывает наклон прямой ОР по отношению к оси абсцисс, измеряемый отношением ординаты точки Р к ее абсциссе и называемый угловым коэффициентом прямой ОР : он равен тангенсу угла между ОР и осью абсцисс и убывает вместе с этим углом). Итак, при возрастании К отношение М/К убывает. Это отношение называется коэффициентом размножения популяции; оно определяет, во сколько раз число особей в следующем поколении больше, чем в предыдущем (если М/К > 1), или меньше (если М/К < 1). Напротив, когда К уменьшается, коэффициент размножения возрастает; наибольшее значение он имеет при К = 0, то есть (биологически) при исчезающе малой популяции. Математически это наибольшее значение получается предельным переходом [Читатель, которого затруднит эта фраза, может опустить ее без вреда для дальнейшего]: когда К уменьшается до нуля, угловой коэффициент "хорды" ОР, равный М/К, стремится к пределу, который называется производной функции М(К) при К = 0 и обозначается М'(0); геометрический смысл этого предела – угловой коэффициент касательной к графику в точке О.

Биологический смысл полученного результата состоит в том, что растущая популяция занимает наиболее удобные места для питания и откладывания личинок, от чего размножение замедляется. Часто влияют и другие факторы: выделение продуктов жизнедеятельности, загрязняющее среду, рост инфекционных заболеваний, и т.п. Возможно, конкуренция за места обитания служит именно для избежания этих явлений. Вплоть до точки 1 (то есть при К < Кc, где Кc – абсцисса точки 1) отношение М/К остается больше 1 (см.рис.7), то есть М > К, и популяция с каждым годом возрастает. Но при К > Кc наклон прямой ОР становится меньше 1, то есть М < К, и популяция начинает убывать: это можно истолковать как эффект перенаселения.

Особый интерес представляют стационарные состояния, в которых М(К) = К. Очевидно, если популяция попала в такое состояние, то она в нем навсегда останется, так как численность ее точно воспроизводится через любое число лет. Но, конечно, этот вывод имеет лишь формальное значение, так как уже небольшое случайное отклонение от состояния равновесия может привести к удалению от этого состояния. Главный интерес представляют устойчивые состояния равновесия – такие, что при любом небольшом отклонении от этого состояния популяция к нему возвращается. В нашем случае, когда фазовая кривая выпукла, она может пересекать биссектрису координатного угла в единственной точке (подумайте, почему?). Мы обозначили эту точку через 1, ее абсциссу через Кc, а ордината ее Мc = Kc . Как мы покажем, точка 1 – устойчивая точка равновесия нашей популяции.

Начнем с популяции, изображаемой точкой графика Р000) (рис.8), то есть с начальной численностью популяции К0, равной

Рис.8

абсциссе точки Р0, и численностью в следующем году, равной ординате М0 точки P0 (чтобы не загромождать чертеж, мы не указываем проекции на оси).

Если К0< Kc, то есть точка P0 лежит левее точки 1, то прием отражения в биссектрисе, как это видно из рис.8, переводит Р0 в точку P1, изображающую популяцию в следующем году, численность которой равна абсциссе K1 точки P1. Следующее применение того же приема приводит к точке P2, абсцисса которой K2 равна численности популяции еще через год, и так далее. Из рис.8 ясно, что точки P0, P1, P2,... подходят сколь угодно близко к точке 1, так что при любой начальной популяции, оказавшейся "левее" точки 1, процесс ее развития подходит сколь угодно близко к состоянию равновесия 1. С другой стороны, если начальное состояние P0' оказалось"справа" от точки 1, то оно переходит в состояния P1' ,P2', P3',..., сходящиеся к точке 1 справа (убедитесь в этом!). Если какие-нибудь случайные факторы заставят точку P несколько отойти от состояния 1 или "перепрыгнуть" через него, то затем она будет снова приближаться к нему, с той или иной стороны. Это и есть то явление, которое называется устойчивым равновесием популяции. Если вначале популяция сколь угодно отличается от равновесной, то (при указанной форме фазовой кривой М(К)!) она в конечном счете стабилизируется около равновесного значения. Таким образом, в отсутствие особых отклоняющих условий всегда будет наблюдаться популяция, близкая к Кc.

Рассмотрим теперь следующий, столь же простой случай, когда фазовая кривая М(К) вогнута, и также пересекает биссектрису в единственной точке 1 (рис.9). Как видно из рисунка, любое состояние популяции P0, лежащее между точками 0 и 1, перейдет последовательно в состояния P1, P2,..., приближающиеся к точке 0; абсциссы этих точек,

Рис.9

то есть численности популяции в последовательные годы, убывают, приближаясь к нулю: популяция вымирает. Если же начальное состояние популяции P0' расположено справа от точки 1, то в следующих состояниях P1', P2',..., как видно из чертежа, численность популяции неограниченно возрастает. Ясно, что такого явления в природе не может быть; следовательно, при достаточно больших значениях численности К кривая на рис.9 уже не является реалистическим изображением процесса размножения; она уже не может быть вогнутой. Какой она может быть при бо'льших численностях, мы скоро увидим.

Точка 1 опять является точкой равновесия, но теперь это неустойчивое равновесие: при малейшем отклонении от этого состояния популяция удаляется от него, либо в сторону вымирания (если отклонение было влево), либо в сторону возрастания (если вправо). Ясно, что такое состояние, как 1, не может сохраниться и никогда не наблюдается в природе. Но точки этого типа важны в качестве "водоразделов", отделяющих области разного поведения популяции.

Если кривая рис.8 часто встречается – а вместе с нею часто встречаются, при неизменных внешних условиях, устойчивые популяции – то кривая рис.9 в целом нереальна; запомним только, что участок вогнутости, лежащий ниже биссектрисы, означает убывание численности популяции до левого конца участка.