Система охлаждения не всегда может поддерживать оптимальную температуру атмосферы корабля, поскольку устанавливающаяся температура сильно зависит от энергообеспечения корабля и других факторов. Например, при аварии "Аполлона-13" снизилось энергообеспечение корабля, и вследствие этого температура упала до трех градусов выше нуля, так что экипаж, не имевший с собой зимней одежды, собрался в относительно теплом лунном модуле, где было одиннадцать градусов выше нуля, но и там люди не могли уснуть. При неполадках на станции "Скайлэб" плохо работал противосолнечный экран, и температура достигала около шестидесяти градусов выше нуля, пока не был установлен дополнительный противосолнечный зонт.
Жизнеобеспечение экипажа космических кораблей
Человек дышит кислородом и не нуждается в других газах земной атмосферы, хотя и вдыхает их вместе с кислородом, так что его легкие наилучшим образом приспособлены к естественной смеси газов, из которой они извлекают кислород. Состав атмосферы Земли (по объему) в настоящее время таков: 78% азота, 21% кислорода, несколько меньше 1% аргона, 0,036% углекислого газа; при этом не учитывается небольшое количество водяного пара, так что здесь (и дальше) имеется в виду сухой воздух. До промышленной революции было 0,02% углекислого газа. Существование человека зависит от кислородного дыхания, и весь служащий для дыхания кислород производят растения. Без него на Земле вообще не было бы свободного кислорода, как нет его в атмосфере других планет: кислород, с его высокой химической активностью, быстро вступает в реакции с различными веществами. Смесь газов, которой человек может дышать, должна содержать не менее 10% кислорода; тренированные люди, например, горцы, могут долго жить и при несколько меньших концентрациях, а недолго – даже при значительно меньших; нетренированные люди плохо чувствуют себя и при не столь сильном снижении концентрации. В течение короткого времени человек может дышать и одним кислородом, но для нормального дыхания лучше, чтобы его парциальное давление было около 21%.
Углекислый газ нужен человеку в очень небольшом количестве, для регуляции дыхания. Поскольку этот газ выделяется легкими человека, то, как предполагают, о его минимальном содержании во вдыхаемом воздухе можно не заботиться. Напротив, его максимальное содержание весьма важно: 5% СO2 уже смертельны! При 0,3% уже замечаются изменения в организме человека, и хотя в замкнутой системе "Биос-3" (о которой рассказывается дальше) люди жили без вредных последствий в течение шести месяцев при 0,8 – 1% CO2, можно принять 0,3% за максимально допустимый уровень.
Растения, напротив, нуждаются в углекислом газе для питания и могут жить, когда его содержание в смеси газов не меньше некоторого небольшого количества, меньшего 0,01%, и не больше 5%. На рисунке 1 изображены области существования человека и растений. Их пересечение соответствует условиям естественной жизни человека.
Рис.1
Хотя этот рисунок носит качественный характер, гораздо бoльшие размеры зоны существования растений свидетельствуют о вполне реальном факте: растения хорошо переносят значительные изменения состава атмосферы, смертельные для нас. Но мы должны думать о таком составе атмосферы, чтобы выжили и мы, и растения, без которых мы не можем жить. Ведь растения не только дают нам кислород, но и доставляют нам продукты питания.
Существование биосферы Земли зависит от двух главных процессов – это процесс фотосинтеза, в результате которого растения синтезируют за счет солнечной энергии необходимые для жизни вещества – главным образом углеводы, жиры и белки –, и обратный процесс деструкции (разложения) этих веществ, осуществляемый животными, грибами и разнообразными микроорганизмами.
Для углеводов эти процессы можно представить схемой:
CO2 + H2O <=> (углеводы) + O2.
Например, фруктоза – первичный продукт фотосинтеза – образуется в соответствии со следующим уравнением:
6CO2 + 12H2O <=> C6H12O6 + 6O2 + 6H2O
(здесь молекулы воды не сокращены, чтобы подчеркнуть, что кислород образуется из воды, а не из углекислого газа). Примеры углеводов: целлюлоза, в огромном количестве синтезируемая в биосфере и используемая практически только грибами; крахмал; гликоген; всем известный мед, состоящий из смеси углеводов; сахароза (обычный сахар), и т.д.
В меньшей мере процессы обмена веществ связаны с циклом жиров (липидов):
CO2 + H2O <=> (жир) + O2.
Жиры имеют весьма разнообразную химическую структуру. Наиболее известны жиры, построенные на основе глицерина и жирных кислот, но для функционирования организмов важнее всего липиды, входящие в состав клеточных мембран.
Если взять за эталонный жир соединение C16H32O2, то химический баланс описывается уравнением:
16CO2 + 16H2O <=> C16H32O2 + 23O2.
Обмен белков требует участия дополнительных азотосодержащих веществ:
(NH4)2CO + CO2 + H2O <=> (белок) + O2 .
Больше всего белков содержат быстрорастущие организмы (некоторые бактерии – до 70%). Главная роль белков – катализ, то есть ускорение химических реакций в организме, без чего жизнь не могла бы существовать. Специфика организма и его отдельной клетки полностью определяются набором содержащихся в них белков.
Если за эталонный белок взять белок состава С4Н5ОN, а за соединение, содержащее азот, C2Н6O2N2, то соответствующее химическое уравнение будет выглядеть следующим образом:
O2H6N2 + 6CO2 + 2H2O <=> 2C4H5ON + 7O2.
Конечно, метаболизм (обмен веществ) организмов связан не только с углеводами, жирами и белками, но и с другими, самыми разнообразными веществами. При этом в циклический обмен наряду с углеродом, кислородом, водородом и азотом, играющими главную роль, вовлекаются почти все элементы таблицы Менделеева. Но их участие в обмене составляет лишь небольшую долю, которую в первом приближении – например, при расчете искусственных биосфер – можно не учитывать.
Из предыдущего, по необходимости очень беглого знакомства с элементами биохимии мы хотели бы сделать один вывод, важный для дальнейшего изложения. Как видно из типичного уравнения образования углевода, из шести молекул углекислого газа, потребляемого растением, получается столько же молекул кислорода, то есть в этом процессе число выделяемых молекул кислорода равно числу потребленных молекул углекислого газа. Примерно так же обстоит дело для всех других процессов синтеза углеводов растениями. Для построения жиров дело обстоит иначе. Из типичного уравнения, приведенного выше, видно, что в этом случае число молекул кислорода, выделяемых при синтезе жира, на одну молекулу углекислого газа приходится примерно полторы молекулы кислорода (из 16 молекул СO2 получается 23 молекулы O2). Приблизительно то же соотношение соблюдается в других процессах образования жиров. Таким образом, при образовании жиров на заданное количество молекул углекислого газа выделяется в полтора раза больше молекул кислорода, чем при образовании углеводов. Конечно, все растения вырабатывают и углеводы, и жиры, но в разных отношениях. Как мы увидим, этот факт имеет важное значение для замкнутых систем жизнеобеспечения человека.
Если фотосинтетические процессы в растениях (начиная с низших микроводорослей и кончая высшими сельскохозяйственными растениями) осуществляются, с биохимической точки зрения, почти одинаково, то процессы деструкции (разложения) связаны с жизнедеятельностью самых разнообразных организмов и осуществляются многими способами. Например, кенгуровая крыса, живущая в пустыне и питающаяся сухими зернами, никогда не пьет, а использует метаболическую воду, образующуюся в организме при разложении пищи. Не все продукты фотосинтеза усваиваются животными. Биомассу деревьев, содержащую главным образом целлюлозу, используют для питания практически только грибы. Рационы разных народов сильно различаются. Например, жители тихоокеанских островов употребляют в пищу главным образом фрукты и орехи, дополняя их небольшим количеством рыбы и другой животной пищи, так что их рацион беден животными, и даже растительными белками и состоит в основном из углеводов. Напротив, северные народы до недавнего времени употребляли в основном жиры и белки – продукты охоты и морского промысла.
Европейский рацион питания, используемый в настоящее время в космосе, на 60 – 65% cостоит из углеводов, на 20 – 25% из белков и на 10 – 20% из жиров.
В биосфере все, что производит какой-либо организм – а в конечном счете и он сам – потребляются некоторыми другими организмами. В результате, за счет солнечной энергии в биосфере происходит циклическое превращение веществ: с точки зрения биохимии, этот метаболический вихрь и есть жизнь. При этом атомы элементов используются многократно, периодически входя в состав самых разнообразных веществ всевозможных живых организмов. Если бы этот химический цикл живой природы был перерезан, то, по-видимому, жизнь в биосфере прекратилась бы в исторически очень короткое время – от нескольких десятков лет до, самое большее, 1,5 – 2 тысяч лет, в зависимости от места разреза. Таким образом, жизнь на Земле существует лишь благодаря замкнутости химического круговорота. Нынешний глобальный экологический кризис связан как раз с нарушением замкнутости биосферы вследствие технической деятельности человека.
Кроме химических превращений, функционирование организмов связано с загрязнением и очисткой водных и газовых сред. Очистка, конечно, осуществляется за счет энергии, поступающей в организм извне. Например, человек, чтобы извлечь для своего организма 0,6 кг кислорода, пропускает за сутки через свои легкие почти 30 кг воздуха, содержащие более 6 кг кислорода. Выдыхаемый воздух уже непригоден для дыхания без очистки. Кроме того, за сутки человек пропускает через свой организм 4 – 5 кг чистой воды и является потребителем воды, хотя в биохимическом смысле он воду производит: вода, прошедшая через организм, загрязняется и также не может быть использована без очистки. С другой стороны, растения с биохимической точки зрения являются потребителями воды, но для их жизнедеятельности требуется ис