Скопление газа и льда в снеговой линии, возможно, создало благоприятную почву для формирования планеты‑гиганта – Юпитера. По массе – и орбитальной энергии или моменту импульса – это самый крупный планетный объект Солнечной системы. Если не принимать во внимание тот факт, что на Земле живем мы, то основная часть содержимого Солнечной системы, в терминах массы, энергии и момента импульса, приходится на счет Солнца и Юпитера. Но это лишь показывает, что размер не всегда имеет значение (по крайней мере, мы, земляне, так бы и сказали).
Как только Юпитер начал формироваться, это ускорило рост ближайших газовых гигантов, например Сатурна. В частности, гравитационное притяжение Юпитера ускоряло бы медленное вращение масс за пределами его орбиты, заставляя их уходить по спирали во внешнее пространство. Частицы пыли и льда, закручивающиеся по спирали по направлению к Юпитеру с еще более высоких орбит, слились бы с этим уходящим потоком, что привело бы к накоплению массы и образованию фидерной зоны для другой гигантской планеты, например Сатурна.
Первые протопланеты, формировавшиеся из частиц пыли, должны были поторапливаться и расти очень быстро. Словно мало было таких помех на пути их развития, как уменьшение момента импульса и преодоление барьера одного метра, – им еще приходилось постоянно соревноваться в скорости с Солнцем. Пока комочки пыли соединялись в большие куски, растущая протозвезда поглощала массу диска и была готова положить начало термоядерным реакциям и зажечься. Непосредственно перед тем как зажечься, протозвезда нагревала внутренние части Солнечной системы и выбрасывала газ, создавая сильный солнечный ветер. Он выдувал из облака остатки пыли и газа, которые не успели присоединиться к относительно массивным телам. Потеря газа и интенсивный солнечный ветер длились несколько десятков миллионов лет после начала коллапса протосолнечного облака в диск, это очень мало по геологическим и космологическим меркам. Это значит, что протопланетам, особенно гигантским планетам с их массивной газовой оболочкой, следовало очень поспешить и успеть сформироваться до того, как их элементы будут поглощены или унесены прочь. Вырастить из этих комочков пыли планетезималь, а потом и планету – задача чрезвычайно трудная, но у Солнечной системы это получилось, хотя ученые до сих пор не могут понять, как ей это удалось. И это еще одна из многих не дающих покоя загадок формирования Солнечной системы.
Каменные протопланеты, которым удалось уцелеть и сформироваться в более горячей внутренней части Солнечной системы, были сначала, вероятно, размером с крупные астероиды. Некоторые из этих небесных тел были достаточно большими, чтобы нагреваться и плавиться; бóльшая часть этого тепла происходила от столкновений, а остальная – от интенсивного нагрева от короткоживущих радиоактивных элементов, например нестабильных изотопов алюминия и калия. Если камень расплавляется и начинает снова застывать, концентрация железа в остаточной магме (расплавленной породе) становится невероятно высокой, поскольку железо легче растворяется в сплавах. Этот затвердевший сплав столь богат железом, что становится тяжелее окружающих его каменных пород, и проваливается к центру этих небесных тел (если, конечно, они достаточно велики, чтобы иметь значительную гравитацию), образуя железное ядро. Такие крупные астероиды, как Веста и Церера, также имеют железное ядро. (Метеориты, которые достигают Земли и содержат чистое железо – их вполне логично называют железными и железокаменными метеоритами, – предположительно, являются остатками тех ядер, которые были выброшены после разрушения астероида в столкновениях.) Многие из астероидов были слишком малы, чтобы это произошло, потому они остались нерасплавленными и примерно в том же составе, в каком изначально сформировались. Большинство таких метеоритов называются хондритами, и они, возможно, представляют собой строительные блоки Солнечной системы. Многие метеориты, достигающие Земли, также относятся к классу хондритов.
Эти ранние планетезимали быстро перемещались по Солнечной системе по различным эллиптическим и случайным орбитам, и лишь те, чьи орбиты были более‑менее круглыми, смогли выжить. Небесные тела, летящие по одной круговой орбите или близко к ней, двигались более медленно по отношению друг к другу, и потому их столкновения были «мягкими», они смогли соединиться, не разрушив друг друга. Спустя десятки миллионов лет эти небесные тела стали намного больше и уже не разрушались и не теряли свои части при столкновениях (из‑за возросшей собственной гравитации) с объектами астероидных размеров; и, таким образом, они стали еще больше, превращаясь в конце концов в планеты земной группы, которые существуют сейчас в Солнечной системе.
Сегодня в Солнечной системе насчитывают восемь планет и Плутон, который переживает кризис идентификации. Хотя Международный астрономический союз лишил в 2006 г. Плутон ранга планеты, открытия зонда НАСА «Новые горизонты» в 2015 г. позволили утвердить Плутон в звании карликовой планеты. Тем не менее во внутренней области Солнечной системы располагаются сухие каменистые планеты, а гигантские газовые и водные планеты – во внешней. Эти области разделяет линия, наличие которой лучше всего объясняется гипотезой снеговой линии. Однако Солнечная система не совсем обычна, даже планеты в ней не обязательно сформировались там, где они находятся сейчас. Самые впечатляющие примеры – это Уран и Нептун, расположенные далеко на окраине Солнечной системы (соответственно в 20 и 30 раз дальше от Солнца, чем Земля). Они должны были бы иметь доступ к большому количеству материала диска, поглощать его и таким образом становиться больше. По идее, эти планеты должны были быть намного больше, чем они есть сейчас. Принято считать, что они формировались, находясь гораздо ближе к Юпитеру и Сатурну (которые, в свою очередь, были ближе друг к другу), и потому были обделены строительным материалом, доставшимся их большим соседям. Сатурн, Уран и Нептун были выброшены на более дальние орбиты во многом из‑за того, что сильнейшее гравитационное притяжение Юпитера выбрасывает небесные тела с их орбит во внешние части Солнечной системы. Пожертвовав часть своего момента импульса для того, чтобы «выселить» соседние планеты, сам Юпитер мог переместиться ближе к центру. Смещение орбит этих огромных планет, вероятно, заставило большое количество объектов уходить по спирали с орбиты Юпитера во внутреннюю область Солнечной системы, что вызвало около 4 млрд лет назад так называемую позднюю тяжелую бомбардировку – планеты земной группы были подвержены массированным ударам астероидов. Теория, описывающая перемещение планет в Солнечной системе, называется «модель Ниццы», в честь научно‑исследовательской группы Университета Ниццы во Франции.
Во внутренней области Солнечной системы находятся небольшие каменистые планеты, в то время как астрономические наблюдения других планетных систем показывают, что в их внутренних областях небесные тела размером с Юпитер располагаются очень близко, почти «на орбите Меркурия», к звезде. Лучше всего это объясняется тем, что эти «горячие юпитеры» образовались во внешней области системы, а потом мигрировали к центру, как, вероятно, и планеты Солнечной системы.
Но из всех историй о формировании Солнечной системы и ее планет одну из самых больших загадок задает наша собственная планета. Как у Земли появилась эта странная Луна? Даже само существование естественного спутника такого большого размера очень странно, потому что Луна почти такая же большая, как многие из спутников Юпитера и Сатурна. Самый большой спутник Юпитера – Ганимед – лишь в два раза массивнее нашей Луны (ничто в космических масштабах). Для сравнения, масса Юпитера в 300 раз больше, чем масса Земли, а Сатурна – почти в 100 раз. Остается загадкой, как такая маленькая планета, как Земля, заполучила такой большой естественный спутник.
Наша необычно крупная Луна, возможно, оказала важное влияние на эволюцию жизни. Приливы и отливы океана, вызываемые притяжением Луны (лунные приливы), становятся причиной появления приливных заводей, где, как предполагал Дарвин и другие ученые, возникли благоприятные условия для развития жизни. Благодаря приливам также образуются литоральные зоны – участки берега, которые затопляются морской водой во время прилива и осушаются (ну, не совсем осушаются, а остаются влажными) во время отлива. Организмы, развивавшиеся в этой зоне, приспособились жить в двух средах, что в конечном счете стало причиной их переселения (или нашествия, в зависимости от вашей точки зрения) на сушу.
Этим странности Земли и Луны не ограничиваются. Радиус орбиты Луны равняется примерно 60 радиусам Земли, и сейчас Луна совершает оборот вокруг Земли примерно за месяц (на самом деле за 27 дней). Однако раньше орбита Луны была намного ближе к Земле. Из‑за того что Земля и Луна притягивались друг к другу посредством взаимных гравитационных сил, а Луна располагалась близко к Земле, наша планета вращалась вокруг своей оси быстрее, подобно тому как это происходит у вращающегося на льду фигуриста, когда он прижимает к себе руки. Действительно, ископаемые остатки кораллов, по которым можно определить суточные и сезонные циклы роста, а также пласты осадочных горных пород возрастом в сотни миллионов лет подтверждают, что дни раньше были значительно короче, чем сейчас. Если бы мы прилепили Луну к Земле, период обращения вокруг своей оси этой объединенной планеты составлял бы 4 часа. Скорость вращения вокруг своей оси объединенной системы Земля – Луна будет намного больше, чем у самой быстро вращающейся планеты Солнечной системы (легок на помине!) – Юпитера, период обращения которого равен 10 часам. Орбита Луны стала такой, какой мы ее наблюдаем сейчас, потому, что лунные приливы на поверхности быстро вращающейся Земли вызывают приливные выступы на поверхности нашей планеты, которые опережают вращение Луны. Гравитационное притяжение этих сил тянет Луну вперед, медленно «выбрасывая» (если вы, конечно, можете себе представить медленное выбрасывание) ее на более высокую орбиту. Из‑за приливного трения Луна удаляется и замедляет вращение Земли. Хотя Земля отдает свой момент импульса Луне, момент импульса системы Земля – Луна остается постоянным.