Mycobacterium tuberculosis. Другая микобактерия, Mycobacterium leprae, вызывает лепру, или проказу, еще один бич человечества, тысячелетиями разъедавший кожу и нервную систему своих жертв, пока не появились современные антибиотики. Микобактерии отличаются потрясающей живучестью. Уже лет 100 мы знаем, например, что M. leprae и M. tuberculosis могут многими месяцами обходиться без воды7. Это озадачивает не только потому, что биохимическая активность клетки немыслима без воды. Если гидрофильные головки липидов не контактируют с водой, то как гидрофильным и гидрофобным взаимодействиям сохранять целостность мембраны и как мембране сохранять целостность бактерии?
Оказывается, у микобактерий очень странные мембраны. Как и у клеток всех остальных организмов, их внутренности ограничены липидным бислоем. Однако снаружи этот бислой покрыт густым гидрофобным гелем, над которым находится еще и монослой липидов, маслянистые хвосты которых направлены внутрь, а гидрофильные головки – наружу. Необычно здесь не только расположение липидов, но и их устройство: у многих молекул к гидрофильным головкам прикреплен сахар трегалоза (на рисунке на него указывает стрелка). Насколько мы знаем, микобактерии и некоторые их близкие родственники – единственные на планете организмы, наделенные трегалозными липидами. Но так ли это важно?
Я узнал об этих микобактериальных мембранах лет десять назад, вскоре после того, как основал свою исследовательскую лабораторию в Орегонском университете. К тому времени я уже несколько лет работал с липидными бислоями, в основном измеряя их жесткость и прочие физические свойства, чтобы понять, на что способны эти материалы. Экспериментируя с сахарами и полимерами, я скооперировался с группой химика Каролин Бертоцци, которая тогда работала в Калифорнийском университете в Беркли. По совпадению они тогда интенсивно изучали, как микобактерии создают трегалозные липиды и другие странные молекулы: группа Бертоцци хотела разобраться в выдуманных природой химических инструментах и научиться выводить их из строя, чтобы побеждать болезни. Именно в ходе этого сотрудничества я впервые услышал о трегалозных липидах и сразу же заинтересовался ими, поскольку трегалоза в иных контекстах слыла чуть ли не волшебным сахаром.
Лишь небольшое число организмов, включая некоторые грибы, растения и даже отдельных животных, способны пережить потерю 99 % воды. Так, «воскресающее растение» плаунок чешуелистный (Selaginella lepidophylla) годами выдерживает почти полную дегидратацию, сворачиваясь в плотный коричневатый шарик, который при поступлении воды «оживает», расправляясь в обычную зеленую розетку листьев. У многих из этих организмов есть кое-что общее: они производят трегалозу, часто в огромных количествах. В сравнении с сахарами вроде знакомых нам глюкозы или сахарозы трегалоза менее склонна кристаллизоваться с ростом концентрации, благодаря чему ее молекулам проще взаимодействовать с другими веществами. Кроме того, трегалоза легко формирует водородные связи – те, что скрепляют молекулы воды друг с другом и с разными гидрофильными молекулами: это позволяет сахару в некоторой степени имитировать воду. Но трегалоза, в отличие от воды, не склонна к испарению. Считается, что все эти свойства делают трегалозу фактором устойчивости к иссушению, и ученые ищут способы использовать ее вне организма – чтобы хранить и транспортировать в высушенном состоянии вакцины и биоматериалы типа клеток крови и ценных белков8. Я задумался: а не приспособили ли микобактерии трегалозный инструментарий в связке с липидами для защиты своей клеточной оболочки от обезвоживания? И как же проверить эту гипотезу?
Нельзя было просто отключить у микробов производство трегалозных липидов, а затем проверять их на прочность: о подобных биохимических механизмах микобактерий мы знаем слишком мало, чтобы их менять. Но даже если бы это было в наших силах, я не горел желанием держать в лаборатории возбудителя туберкулеза. (Как мы позже узнаем, моя группа с удовольствием работала с холерными вибрионами, но холеру легко предупредить, сложно подхватить, просто излечить – в отличие от туберкулеза.) Я выбрал другой подход, который уже десятки лет успешно работал с «нормальными» липидными бислоями: воссоздание искусственных бесклеточных мембран на твердых поверхностях. Обычные липиды можно подтолкнуть к формированию бислоев на очень чистых и ровных стеклах. В силу гидрофильности стекла и липидных головок их разделяет водная прослойка толщиной 1–2 нанометра, позволяя бислою сохранять двумерную текучесть. Нам приходится жертвовать долей реализма целостной клеточной мембраны, зато мы получаем удобную контролируемую платформу для изучения биофизики липидного бислоя.
Мы решили попробовать сконструировать аналогичную мембранную платформу, чтобы имитировать небислойную организацию липидов у M. tuberculosis. Сначала мы химически связали гидрофобные молекулы со стеклянными подложками. Отдельно на поверхности воды, заполняющей специальные кюветы, сформировали монослои липидов с торчащими в воздух гидрофобными хвостами и аккуратно перенесли их на стеклянные подложки так, чтобы хвосты связались с уже нанесенным гидрофобным слоем. Наши монослои состояли из вполне распространенных липидов с нужной долей очищенных трегалозных форм. Как и у живых микобактерий, под монослоем с трегалозными липидами у наших искусственных мембран находился плотный гидрофобный слой.
На базе такой платформы мы могли дегидратировать и регидратировать полученную мембрану. Как и ожидалось, монослои исключительно из «обычных» липидов не выживали при высушивании. Зато монослои, почти полностью состоящие из микобактериальных трегалозных липидов, после дегидратации и регидратации оставались невредимыми и даже сохраняли текучесть. Но примечательнее было то, что монослои из смеси обычных и трегалозных липидов выдерживали обезвоживание, пока содержание трегалозных форм в них не падало ниже 25 %. Иными словами, даже находясь в меньшинстве, трегалозные липиды обеспечивали устойчивость мембраны к дегидратации. Вместе с коллегами из лаборатории Бертоцци мы пошли еще дальше: в частности, Дэвид Рабука создал синтетические липиды: их головка содержала трегалозу, а вот хвостовые цепочки были как у других, стандартных липидов. (У природных микобактериальных липидов гигантские гидрофобные хвосты. Можно было предположить, что их цепочки как-то по-особому переплетаются, и именно благодаря такой запутанности, а вовсе не трегалозе, консервируются мембраны.) Эти химерные молекулы спасали мембраны от обезвоживания не хуже микобактериальных липидов, что указывало на саму трегалозу как защитный фактор. Такой результат удовлетворил наших коллег, меня и мою зарождавшуюся исследовательскую группу9.
Очевидно, возбудители туберкулеза и лепры нашли хитрый и надежный способ сопротивляться стрессу, привязывая сахара к липидам и, разумеется, эксплуатируя самосборку липидов в мембраны для формирования своей поверхности. Можно ли сконструировать еще более устойчивые к иссушению слои, например с несколькими трегалозными остатками на молекулу липида, для решения проблемы хранения биоматериалов? Можно ли разрушать связанную с липидами трегалозу, чтобы бороться с туберкулезом? Не знаю, будущее покажет.
Если вернуться к обычным клеточным мембранам, то двумерная текучесть липидных бислоев создает клетке потенциальную проблему: как ей организовывать свою мембрану, чтобы одни белки кластерировались со своими партнерами, а другие оставались в одиночестве, если мембрана в целом – это жидкость? Можно, например, как делают Т-лимфоциты, связать мембранные белки с внутренним каркасом клетки, рельсы и моторы которого будут направлять их куда надо. А можно выбрать другую тактику, вытекающую из физических свойств самой мембраны и задействующую два типа липидов. Оба формируют текучие бислои, предназначенные для защиты гидрофобных хвостов от воды, но каждый предпочитает окружение себе подобных: липиды А тяготеют к А, а липиды B – к B. Как масло и вода, два типа липидов не смешиваются, однако их сегрегация ограничивается двумерным пространством бислоя. В последние десятилетия XX века ученые поняли, что подобная сегрегация в стандартном наборе мембранных липидов вполне возможна. Гидрофобные хвосты разных липидов могут быть как относительно жесткими, так и относительно гибкими, в зависимости от типа химической связи между их атомами. В случае сочетания липидов с жесткими и гибкими хвостами и холестерина (который в изобилии представлен в клеточных мембранах) формируются бислои, напоминающие коктейль из двух разных составов, сосуществующих друг с другом. Один состав богат холестерином и липидами с жесткими хвостами, другой – липидами с гибкими хвостами. Их сегрегация демонстрирует все признаки фазового разделения, которое физики изучают уже не первый десяток лет, особенно в контексте его зависимости от температуры. Если температура превышает какое-то критическое значение, разные липиды перемешиваются (см. верхний рисунок), а если не достигает его – сегрегируются в соответствии со своими предпочтениями (нижний рисунок).
Как и в случае с плавлением ДНК (см. главу 1), переход происходит резко, и аналитический инструментарий, разработанный для небиологических материалов, снова находит применение в живой природе. Обнаруженная картина наводит на мысль, что клетки могли бы использовать это холестерин-зависимое фазовое разделение для организации своих мембран. Разные белки с одинаковыми предпочтениями – любители богатой холестерином фазы и нелюбители – распределялись бы по разным областям. Искусственные мембраны сильно облегчают нам изучение фазового разделения липидов. В лаборатории несложно сконструировать из липидного бислоя сферы размером с клетку и использовать их как инструмент для изучения биофизики мембран и мембранных белков. (Они напоминают мыльные пузыри, но вместо воздуха у них внутри и снаружи вода, а оболочкой служит липидный бислой.) Глядя в микроскоп на мембрану, помеченную разными пигментами, предпочитающими богатые или небогатые холестерином домены, – например, светло-серым и темно-серым, как на рисунке, – мы увидим диски одного цвета в море другого.